Suppr超能文献

一种用于复杂护理活动识别和护士身份识别的堆叠卷积神经网络与随机森林集成架构。

A stacked CNN and random forest ensemble architecture for complex nursing activity recognition and nurse identification.

作者信息

Rahman Arafat, Nahid Nazmun, Schuller Björn, Ahad Md Atiqur Rahman

机构信息

University of Virginia, Charlottesville, USA.

Kyushu Institute of Technology, Kitakyushu, Japan.

出版信息

Sci Rep. 2024 Dec 30;14(1):31667. doi: 10.1038/s41598-024-81228-x.

Abstract

Nursing activity recognition has immense importance in the development of smart healthcare management and is an extremely challenging area of research in human activity recognition. The main reasons are an extreme class-imbalance problem and intra-class variability depending on both the subject and the recipient. In this paper, we apply a unique two-step feature extraction, coupled with an intermediate feature 'Angle' and a new feature called mean min max sum to render the features robust against intra-class variation. After intermediate and final feature extraction, we use an ensemble of a random forest classifier and a stacked convolutional neural network (S-CNN) model to detect activities and users. Unlike traditional CNN, the S-CNN takes the input feature channels in separate pathways with equal importance, which makes it robust to intra-class variation and produces accurate results. We apply this method to two benchmark open-source nurse care activity data sets. Our algorithm is robust enough to recognize both activity and user (Nurse) simultaneously. During the recognition process, this algorithm automatically finds the important features in the data set. Using this algorithm, the highest testing accuracies were achieved for activity recognition on the two (publicly available in IEEE DataPort) benchmark data sets: The CARECOM Nurse Care Activity (70.6% accuracy) and the Heiseikai Nurse Care Activity data set (85.7% accuracy). Moreover, the highest accuracy achieved for user identification on Data Set 1 and Data Set 2 is 78.2% and 92.7%, respectively.

摘要

护理活动识别在智能医疗管理的发展中具有极其重要的意义,并且是人类活动识别中一个极具挑战性的研究领域。主要原因是存在极端的类别不平衡问题以及取决于主体和接受者的类内变异性。在本文中,我们应用了一种独特的两步特征提取方法,结合中间特征“角度”和一个名为均值最小最大和的新特征,以使特征对类内变化具有鲁棒性。在进行中间和最终特征提取之后,我们使用随机森林分类器和堆叠卷积神经网络(S-CNN)模型的集成来检测活动和用户。与传统的卷积神经网络不同,S-CNN以同等重要性在单独的路径中获取输入特征通道,这使其对类内变化具有鲁棒性并能产生准确的结果。我们将此方法应用于两个基准开源护士护理活动数据集。我们的算法足够鲁棒,能够同时识别活动和用户(护士)。在识别过程中,该算法会自动在数据集中找到重要特征。使用此算法,在两个(可在IEEE DataPort上公开获取)基准数据集上进行活动识别时,取得了最高测试准确率:CARECOM护士护理活动(准确率70.6%)和Heiseikai护士护理活动数据集(准确率85.7%)。此外,在数据集1和数据集2上进行用户识别时取得的最高准确率分别为78.2%和92.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9265/11685546/ab0546e85ff3/41598_2024_81228_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验