Suppr超能文献

使用放置在手腕或脚踝处的单个加速度计进行活动识别。

Activity recognition using a single accelerometer placed at the wrist or ankle.

机构信息

1The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, ITALY; 2College of Computer and Information Science and Bouvé College of Health Sciences, Northeastern University, Boston, MA; and 3Stanford Prevention Research Center, Stanford University, Stanford, CA.

出版信息

Med Sci Sports Exerc. 2013 Nov;45(11):2193-203. doi: 10.1249/MSS.0b013e31829736d6.

Abstract

PURPOSE

Large physical activity surveillance projects such as the UK Biobank and NHANES are using wrist-worn accelerometer-based activity monitors that collect raw data. The goal is to increase wear time by asking subjects to wear the monitors on the wrist instead of the hip, and then to use information in the raw signal to improve activity type and intensity estimation. The purposes of this work was to obtain an algorithm to process wrist and ankle raw data and to classify behavior into four broad activity classes: ambulation, cycling, sedentary, and other activities.

METHODS

Participants (N = 33) wearing accelerometers on the wrist and ankle performed 26 daily activities. The accelerometer data were collected, cleaned, and preprocessed to extract features that characterize 2-, 4-, and 12.8-s data windows. Feature vectors encoding information about frequency and intensity of motion extracted from analysis of the raw signal were used with a support vector machine classifier to identify a subject's activity. Results were compared with categories classified by a human observer. Algorithms were validated using a leave-one-subject-out strategy. The computational complexity of each processing step was also evaluated.

RESULTS

With 12.8-s windows, the proposed strategy showed high classification accuracies for ankle data (95.0%) that decreased to 84.7% for wrist data. Shorter (4 s) windows only minimally decreased performances of the algorithm on the wrist to 84.2%.

CONCLUSIONS

A classification algorithm using 13 features shows good classification into the four classes given the complexity of the activities in the original data set. The algorithm is computationally efficient and could be implemented in real time on mobile devices with only 4-s latency.

摘要

目的

英国生物库和 NHANES 等大型身体活动监测项目正在使用基于腕戴加速度计的活动监测器来收集原始数据。其目的是通过让研究对象将监测器戴在手腕上而不是臀部上,从而增加佩戴时间,然后利用原始信号中的信息来改善活动类型和强度估计。这项工作的目的是获得一种处理手腕和脚踝原始数据的算法,并将行为分类为四个广泛的活动类别:散步、骑车、久坐和其他活动。

方法

佩戴腕戴和踝戴加速度计的参与者(N=33)进行了 26 项日常活动。采集、清理和预处理加速度计数据,以提取特征来描述 2、4 和 12.8 秒数据窗口。从原始信号分析中提取的运动频率和强度特征的特征向量被用于支持向量机分类器,以识别研究对象的活动。结果与人类观察者分类的类别进行了比较。使用留一法验证了算法。还评估了每个处理步骤的计算复杂度。

结果

使用 12.8 秒的窗口,所提出的策略对踝部数据的分类准确率很高(95.0%),而腕部数据的准确率降低至 84.7%。更短的(4 秒)窗口仅使算法在腕部的性能略有下降至 84.2%。

结论

使用 13 个特征的分类算法在原始数据集活动的复杂性下,可将数据很好地分类为四个类别。该算法计算效率高,在具有 4 秒延迟的移动设备上实时实现的计算复杂度也较低。

相似文献

1
Activity recognition using a single accelerometer placed at the wrist or ankle.
Med Sci Sports Exerc. 2013 Nov;45(11):2193-203. doi: 10.1249/MSS.0b013e31829736d6.
2
Performance of Activity Classification Algorithms in Free-Living Older Adults.
Med Sci Sports Exerc. 2016 May;48(5):941-50. doi: 10.1249/MSS.0000000000000844.
3
Activity Recognition in Youth Using Single Accelerometer Placed at Wrist or Ankle.
Med Sci Sports Exerc. 2017 Apr;49(4):801-812. doi: 10.1249/MSS.0000000000001144.
4
Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
J Sci Med Sport. 2017 Jan;20(1):75-80. doi: 10.1016/j.jsams.2016.06.003. Epub 2016 Jun 23.
5
Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
J Appl Physiol (1985). 2018 May 1;124(5):1284-1293. doi: 10.1152/japplphysiol.00760.2017. Epub 2018 Jan 25.
6
Physical activity classification using the GENEA wrist-worn accelerometer.
Med Sci Sports Exerc. 2012 Apr;44(4):742-8. doi: 10.1249/MSS.0b013e31823bf95c.
7
Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
Med Sci Sports Exerc. 2016 May;48(5):933-40. doi: 10.1249/MSS.0000000000000840.
8
Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
J Neuroeng Rehabil. 2018 Nov 15;15(1):105. doi: 10.1186/s12984-018-0456-x.
10
Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities.
Int J Environ Res Public Health. 2019 Jul 21;16(14):2598. doi: 10.3390/ijerph16142598.

引用本文的文献

1
3
Practical guidelines for validation of supervised machine learning models in accelerometer-based animal behaviour classification.
J Anim Ecol. 2025 Jul;94(7):1322-1334. doi: 10.1111/1365-2656.70054. Epub 2025 May 19.
6
mORAL: An Health Model for Inferring Oral Hygiene Behaviors in-the-wild Using Wrist-worn Inertial Sensors.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019 Mar;3(1). doi: 10.1145/3314388. Epub 2019 Mar 29.

本文引用的文献

1
Using Wearable Activity Type Detection to Improve Physical Activity Energy Expenditure Estimation.
Proc ACM Int Conf Ubiquitous Comput. 2010 Sep;2010:311-320. doi: 10.1145/1864349.1864396.
2
Sensor positioning for activity recognition using wearable accelerometers.
IEEE Trans Biomed Circuits Syst. 2011 Aug;5(4):320-9. doi: 10.1109/TBCAS.2011.2160540.
3
Estimating activity and sedentary behavior from an accelerometer on the hip or wrist.
Med Sci Sports Exerc. 2013 May;45(5):964-75. doi: 10.1249/MSS.0b013e31827f0d9c.
5
Design of a wearable physical activity monitoring system using mobile phones and accelerometers.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3636-9. doi: 10.1109/IEMBS.2011.6090611.
6
Physical activity classification using the GENEA wrist-worn accelerometer.
Med Sci Sports Exerc. 2012 Apr;44(4):742-8. doi: 10.1249/MSS.0b013e31823bf95c.
7
Tracking motor recovery in stroke survivors undergoing rehabilitation using wearable technology.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6858-61. doi: 10.1109/IEMBS.2010.5626446.
8
Methods for gait event detection and analysis in ambulatory systems.
Med Eng Phys. 2010 Jul;32(6):545-52. doi: 10.1016/j.medengphy.2010.03.007.
9
Walking speed estimation using a shank-mounted inertial measurement unit.
J Biomech. 2010 May 28;43(8):1640-3. doi: 10.1016/j.jbiomech.2010.01.031. Epub 2010 Feb 24.
10
Avoiding non-independence in fMRI data analysis: leave one subject out.
Neuroimage. 2010 Apr 1;50(2):572-6. doi: 10.1016/j.neuroimage.2009.10.092. Epub 2009 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验