Suppr超能文献

用于减轻偏差和可解释的口腔病变分类的注意力引导卷积网络。

Attention-guided convolutional network for bias-mitigated and interpretable oral lesion classification.

作者信息

Patel Adeetya, Besombes Camille, Dillibabu Theerthika, Sharma Mridul, Tamimi Faleh, Ducret Maxime, Chauvin Peter, Madathil Sreenath

机构信息

Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.

College of Dental Medicine, QU Health, Qatar University, Doha, Qatar.

出版信息

Sci Rep. 2024 Dec 30;14(1):31700. doi: 10.1038/s41598-024-81724-0.

Abstract

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias. The model integrates three components: (i) a Classification Stream, utilizing a CNN to categorize images into 16 lesion types (baseline model), (ii) a Guidance Stream, which aligns class activation maps with clinically relevant areas using ground truth segmentation masks (GAIN model), and (iii) an Anatomical Site Prediction Stream, improving interpretability by predicting lesion location (GAIN+ASP model). The development dataset comprised 2765 intra-oral digital images of 16 lesion types from 1079 patients seen at an oral pathology clinic between 1999 and 2021. The GAIN model demonstrated a 7.2% relative improvement in accuracy over the baseline for 16-class classification, with superior class-specific balanced accuracy and AUC scores. Additionally, the GAIN model enhanced lesion localization and improved the alignment between attention maps and ground truth. The proposed models also exhibited greater robustness against dataset bias, as shown in ablation studies.

摘要

准确诊断口腔病变(口腔癌的早期指标)是一项复杂的临床挑战。深度学习的最新进展已显示出在支持临床决策方面的潜力。本文介绍了一种用于口腔病变分类的深度学习模型,重点关注准确性、可解释性以及减少数据集偏差。该模型集成了三个组件:(i)一个分类流,利用卷积神经网络(CNN)将图像分类为16种病变类型(基线模型);(ii)一个引导流,使用真实分割掩码将类激活映射与临床相关区域对齐(GAIN模型);(iii)一个解剖部位预测流,通过预测病变位置提高可解释性(GAIN+ASP模型)。开发数据集包括1999年至2021年间在一家口腔病理诊所就诊的1079名患者的2765张16种病变类型的口腔内数字图像。GAIN模型在16类分类中相对于基线的准确率有7.2%的相对提高,具有更高的类特异性平衡准确率和曲线下面积(AUC)分数。此外,GAIN模型增强了病变定位,并改善了注意力映射与真实情况之间的对齐。如消融研究所示,所提出的模型对数据集偏差也表现出更强的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d64/11685657/e5fa7deac19c/41598_2024_81724_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验