Suppr超能文献

将知识概念与全切片图像对齐以进行精确的组织病理学图像分析。

Aligning knowledge concepts to whole slide images for precise histopathology image analysis.

作者信息

Zhao Weiqin, Guo Ziyu, Fan Yinshuang, Jiang Yuming, Yeung Maximus C F, Yu Lequan

机构信息

School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China.

School of Medicine, Wake Forest University, Winston-Salem, NC, USA.

出版信息

NPJ Digit Med. 2024 Dec 30;7(1):383. doi: 10.1038/s41746-024-01411-2.

Abstract

Due to the large size and lack of fine-grained annotation, Whole Slide Images (WSIs) analysis is commonly approached as a Multiple Instance Learning (MIL) problem. However, previous studies only learn from training data, posing a stark contrast to how human clinicians teach each other and reason about histopathologic entities and factors. Here, we present a novel knowledge concept-based MIL framework, named ConcepPath, to fill this gap. Specifically, ConcepPath utilizes GPT-4 to induce reliable disease-specific human expert concepts from medical literature and incorporate them with a group of purely learnable concepts to extract complementary knowledge from training data. In ConcepPath, WSIs are aligned to these linguistic knowledge concepts by utilizing the pathology vision-language model as the basic building component. In the application of lung cancer subtyping, breast cancer HER2 scoring, and gastric cancer immunotherapy-sensitive subtyping tasks, ConcepPath significantly outperformed previous SOTA methods, which lacked the guidance of human expert knowledge.

摘要

由于全切片图像(WSIs)尺寸大且缺乏细粒度注释,其分析通常被视为一个多实例学习(MIL)问题。然而,以往的研究仅从训练数据中学习,这与人类临床医生相互传授知识以及对组织病理学实体和因素进行推理的方式形成了鲜明对比。在此,我们提出了一种基于知识概念的新型MIL框架,名为ConcepPath,以填补这一空白。具体而言,ConcepPath利用GPT-4从医学文献中归纳出可靠的疾病特异性人类专家概念,并将其与一组纯可学习概念相结合,以从训练数据中提取互补知识。在ConcepPath中,通过将病理视觉语言模型作为基本构建组件,将WSIs与这些语言知识概念对齐。在肺癌亚型分类、乳腺癌HER2评分和胃癌免疫治疗敏感亚型分类任务的应用中,ConcepPath显著优于以往缺乏人类专家知识指导的SOTA方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76b2/11685412/14cde1377956/41746_2024_1411_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验