Suppr超能文献

局灶性皮质发育异常的检测:人工智能模型的开发与多中心评估

Detection of focal cortical dysplasia: Development and multicentric evaluation of artificial intelligence models.

作者信息

Kersting Lennart N, Walger Lennart, Bauer Tobias, Gnatkovsky Vadym, Schuch Fabiane, David Bastian, Neuhaus Elisabeth, Keil Fee, Tietze Anna, Rosenow Felix, Kaindl Angela M, Hattingen Elke, Huppertz Hans-Jürgen, Radbruch Alexander, Surges Rainer, Rüber Theodor

机构信息

Department of Neuroradiology, University Hospital Bonn, Bonn, Germany.

Department of Epileptology, University Hospital Bonn, Bonn, Germany.

出版信息

Epilepsia. 2025 Apr;66(4):1165-1176. doi: 10.1111/epi.18240. Epub 2024 Dec 31.

Abstract

OBJECTIVE

Focal cortical dysplasia (FCD) is a common cause of drug-resistant focal epilepsy but can be challenging to detect visually on magnetic resonance imaging. Three artificial intelligence models for automated FCD detection are publicly available (MAP18, deepFCD, MELD) but have only been compared on single-center data. Our first objective is to compare them on independent multicenter test data. Additionally, we train and compare three new models and make them publicly available.

METHODS

We retrospectively collected FCD cases from four epilepsy centers. We chose three novel models that take two-dimensional (2D) slices (2D-nnUNet), 2.5D slices (FastSurferCNN), and large 3D patches (3D-nnUNet) as inputs and trained them on a subset of Bonn data. As core evaluation metrics, we used voxel-level Dice similarity coefficient (DSC), cluster-level F score, subject-level detection rate, and specificity.

RESULTS

We collected 329 subjects, 244 diagnosed with FCD (27.7 ± 14.4 years old, 54% male) and 85 healthy controls (7.1 ± 2.4 years old, 51% female). We used 118 subjects for model training and kept the remaining subjects as an independent test set. 3D-nnUNet achieved the highest F score of .58, the highest DSC of .36 (95% confidence interval [CI] = .30-.41), a detection rate of 55%, and a specificity of 86%. deepFCD showed the highest detection rate (82%) but had the lowest specificity (0%) and cluster-level precision (.03, 95% CI = .03-.04, F score = .07). MELD showed the least performance variation across centers, with detection rates between 46% and 54%.

SIGNIFICANCE

This study shows the variance in performance for FCD detection models in a multicenter dataset. The two models with 3D input data showed the highest sensitivity. The 2D models performed worse than all other models, suggesting that FCD detection requires 3D data. The greatly improved precision of 3D-nnUNet may make it a sensible choice to aid FCD detection.

摘要

目的

局灶性皮质发育不良(FCD)是药物难治性局灶性癫痫的常见病因,但在磁共振成像上进行视觉检测可能具有挑战性。目前有三种用于自动检测FCD的人工智能模型(MAP18、deepFCD、MELD)可供公开使用,但仅在单中心数据上进行过比较。我们的首要目标是在独立的多中心测试数据上对它们进行比较。此外,我们训练并比较了三种新模型,并将其公开。

方法

我们回顾性收集了来自四个癫痫中心的FCD病例。我们选择了三种新颖的模型,它们分别以二维(2D)切片(2D-nnUNet)、2.5D切片(FastSurferCNN)和大尺寸三维(3D)图像块(3D-nnUNet)作为输入,并在波恩数据的一个子集上对它们进行训练。作为核心评估指标,我们使用了体素级别的骰子相似系数(DSC)、聚类级别的F分数、受试者级别的检测率和特异性。

结果

我们收集了329名受试者,其中244名被诊断为FCD(年龄27.7±14.4岁,男性占54%),85名健康对照者(年龄7.1±2.4岁,女性占51%)。我们使用118名受试者进行模型训练,并将其余受试者作为独立测试集。3D-nnUNet的F分数最高,为0.58,DSC最高,为0.36(95%置信区间[CI]=0.30-0.41),检测率为55%,特异性为86%。deepFCD的检测率最高(82%),但特异性最低(0%),聚类级别的精确率为0.03(95%CI=0.03-0.04,F分数=0.07)。MELD在各中心之间的性能差异最小,检测率在46%至54%之间。

意义

本研究显示了多中心数据集中FCD检测模型的性能差异。两种具有3D输入数据的模型显示出最高的灵敏度。2D模型的表现比所有其他模型都差,这表明FCD检测需要3D数据。3D-nnUNet大大提高的精确率可能使其成为辅助FCD检测的明智选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e577/11997906/6ac058c7578f/EPI-66-1165-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验