Suppr超能文献

比较3D、2.5D和2D方法在脑图像自动分割中的应用

Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation.

作者信息

Avesta Arman, Hossain Sajid, Lin MingDe, Aboian Mariam, Krumholz Harlan M, Aneja Sanjay

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA.

Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA.

出版信息

Bioengineering (Basel). 2023 Feb 1;10(2):181. doi: 10.3390/bioengineering10020181.

Abstract

Deep-learning methods for auto-segmenting brain images either segment one slice of the image (2D), five consecutive slices of the image (2.5D), or an entire volume of the image (3D). Whether one approach is superior for auto-segmenting brain images is not known. We compared these three approaches (3D, 2.5D, and 2D) across three auto-segmentation models (capsule networks, UNets, and nnUNets) to segment brain structures. We used 3430 brain MRIs, acquired in a multi-institutional study, to train and test our models. We used the following performance metrics: segmentation accuracy, performance with limited training data, required computational memory, and computational speed during training and deployment. The 3D, 2.5D, and 2D approaches respectively gave the highest to lowest Dice scores across all models. 3D models maintained higher Dice scores when the training set size was decreased from 3199 MRIs down to 60 MRIs. 3D models converged 20% to 40% faster during training and were 30% to 50% faster during deployment. However, 3D models require 20 times more computational memory compared to 2.5D or 2D models. This study showed that 3D models are more accurate, maintain better performance with limited training data, and are faster to train and deploy. However, 3D models require more computational memory compared to 2.5D or 2D models.

摘要

用于自动分割脑图像的深度学习方法要么分割图像的一个切片(2D)、图像的五个连续切片(2.5D),要么分割图像的整个体积(3D)。目前尚不清楚哪种方法在自动分割脑图像方面更具优势。我们在三种自动分割模型(胶囊网络、U-Net和nnU-Net)中比较了这三种方法(3D、2.5D和2D),以分割脑结构。我们使用了在一项多机构研究中获取的3430张脑部磁共振成像(MRI)来训练和测试我们的模型。我们使用了以下性能指标:分割准确性、在有限训练数据下的性能、所需的计算内存以及训练和部署期间的计算速度。在所有模型中,3D、2.5D和2D方法的骰子分数分别从高到低。当训练集大小从3199张MRI减少到60张MRI时,3D模型保持了更高的骰子分数。3D模型在训练期间收敛速度快20%至40%,在部署期间快30%至50%。然而,与2.5D或2D模型相比,3D模型需要的计算内存多20倍。这项研究表明,3D模型更准确,在有限训练数据下保持更好的性能,并且训练和部署速度更快。然而,与2.5D或2D模型相比,3D模型需要更多的计算内存。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f98/9952534/a78c80b38816/bioengineering-10-00181-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验