Layous Majed, Gildor Tsvia, Nehrer Tovah, Qassem Areen, Wolfenson Haguy, Ben-Tabou de-Leon Smadar
Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.
Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion, Haifa 3525433, Israel.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2408628121. doi: 10.1073/pnas.2408628121. Epub 2024 Dec 31.
Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear. Here, we use the sea urchin larval skeletogenesis to investigate the role of substrate stiffness and focal adhesion kinase (FAK) in biomineralization. We demonstrate that substrate stiffness alters spicule morphology and growth, indicating a mechanosensitive response during skeletogenesis. We show that active FAK, F-actin, and vinculin are enriched around the spicules, indicating the formation of focal adhesion complexes and suggesting that the cells sense the mechanical properties of the biomineral. Furthermore, we find that FAK activity is regulated by Rho-associated protein kinase (ROCK) and is crucial for skeletal growth and normal branching. FAK and ROCK activate extracellular signal-regulated kinase (ERK), which regulates skeletogenic gene expression at the tips of the spicules. Thus, the FAK-ROCK-ERK circuit seems to provide essential mechanical feedback on spicule elongation to the skeletogenic gene regulatory network, enabling skeletal growth. Remarkably, the same factors govern mammalian osteoblast differentiation in vitro and pathological calcification in vivo. Thus, this study highlights a common mechanotransduction pathway in biomineralization that was probably independently co-opted across different organisms to shape mineralized structures in metazoans.
生物矿化是大量生物体利用不同矿物质形成硬组织并将其塑造为各种形态的过程。在这种多样性中,所有矿化组织的一个共同特征是它们的高硬度,这意味着机械传感可能在生物矿化中普遍存在。然而,机械传感在生物矿化中的作用尚不清楚。在这里,我们利用海胆幼虫骨骼发生来研究底物硬度和粘着斑激酶(FAK)在生物矿化中的作用。我们证明底物硬度会改变骨针形态和生长,表明在骨骼发生过程中存在机械敏感反应。我们发现活性FAK、F-肌动蛋白和纽蛋白在骨针周围富集,表明粘着斑复合物的形成,并表明细胞能够感知生物矿化的力学性质。此外,我们发现FAK活性受Rho相关蛋白激酶(ROCK)调节,对骨骼生长和正常分支至关重要。FAK和ROCK激活细胞外信号调节激酶(ERK),ERK在骨针尖端调节骨骼生成基因的表达。因此,FAK-ROCK-ERK信号通路似乎为骨骼生成基因调控网络提供了关于骨针伸长的重要机械反馈,从而实现骨骼生长。值得注意的是,相同的因素在体外控制哺乳动物成骨细胞分化,在体内控制病理性钙化。因此,这项研究突出了生物矿化中一种常见的机械转导途径,该途径可能在不同生物体中被独立采用,以塑造后生动物中的矿化结构。