Suppr超能文献

靶向人类真菌病原体应激反应的结构导向方法。

Structure-guided approaches to targeting stress responses in human fungal pathogens.

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.

Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.

出版信息

J Biol Chem. 2020 Oct 16;295(42):14458-14472. doi: 10.1074/jbc.REV120.013731. Epub 2020 Aug 12.

Abstract

Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of , and Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.

摘要

真菌栖息在极其多样的生态位,包括人体。侵袭性真菌感染对全球人类健康造成严重影响,每年导致约 150 万人死亡。这些死亡大多归因于 、 和 。治疗真菌感染具有挑战性,部分原因是对我们有限的抗真菌药物产生了耐药性,需要开发新的治疗选择。虽然传统的抗真菌策略针对的是真菌生长所必需的蛋白质或细胞成分,但一种有吸引力的替代策略是针对调节真菌毒力或抗真菌药物耐药性的蛋白质,例如调节真菌应激反应的蛋白质。应激反应网络使真菌能够适应、生长并在人类中引起疾病,其中包括在真核生物中高度保守的调节剂以及真菌特异性调节剂。这篇综述强调了阐明真菌应激反应调节剂晶体结构的最新进展,并强调了这方面的知识如何指导真菌选择性抑制剂的设计。我们专注于高度保守的调节剂的进展,包括分子伴侣 Hsp90、蛋白磷酸酶钙调神经磷酸酶和小 GTP 酶 Ras1,以及不同的应激反应调节剂,包括细胞壁激酶 Yck2 和海藻糖合酶。探索这些重要的真菌应激调节剂的结构将加速设计选择性抗真菌药物,以对抗危及生命的真菌感染。

相似文献

4
Heat shock protein inhibitors for the treatment of fungal infections.用于治疗真菌感染的热休克蛋白抑制剂。
Recent Pat Antiinfect Drug Discov. 2011 Jan;6(1):38-44. doi: 10.2174/157489111794407840.
8
Echinocandin resistance in human pathogenic fungi.人类致病真菌中的棘白菌素耐药性。
Expert Rev Anti Infect Ther. 2012 Feb;10(2):115-6. doi: 10.1586/eri.11.171.
9
The fungal Achilles' heel: targeting Hsp90 to cripple fungal pathogens.真菌的致命弱点:靶向 Hsp90 以削弱真菌病原体。
Curr Opin Microbiol. 2013 Aug;16(4):377-84. doi: 10.1016/j.mib.2013.03.005. Epub 2013 Apr 13.

引用本文的文献

9
Genomic Approaches to Antifungal Drug Target Identification and Validation.基因组学方法在抗真菌药物靶标鉴定和验证中的应用。
Annu Rev Microbiol. 2022 Sep 8;76:369-388. doi: 10.1146/annurev-micro-041020-094524. Epub 2022 Jun 1.

本文引用的文献

7
Stress-Activated Protein Kinases in Human Fungal Pathogens.人源真菌病原体中的应激激活蛋白激酶。
Front Cell Infect Microbiol. 2019 Jul 17;9:261. doi: 10.3389/fcimb.2019.00261. eCollection 2019.
10
Fungal evolution: major ecological adaptations and evolutionary transitions.真菌进化:主要生态适应和进化转变。
Biol Rev Camb Philos Soc. 2019 Aug;94(4):1443-1476. doi: 10.1111/brv.12510. Epub 2019 Apr 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验