Suppr超能文献

一种用于多级阈值医学图像分割的改进粒子群优化算法。

An improved particle swarm optimization for multilevel thresholding medical image segmentation.

作者信息

Ma Jiaqi, Hu Jianmin

机构信息

GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou, Guangdong province, China.

出版信息

PLoS One. 2024 Dec 31;19(12):e0306283. doi: 10.1371/journal.pone.0306283. eCollection 2024.

Abstract

Multilevel thresholding image segmentation is one of the widely used image segmentation methods, and it is also an important means of medical image preprocessing. Replacing the original costly exhaustive search approach, swarm intelligent optimization algorithms are recently used to determine the optimal thresholds for medical image, and medical images tend to have higher bit depth. Aiming at the drawbacks of premature convergence of existing optimization algorithms for high-bit depth image segmentation, this paper presents a pyramid particle swarm optimization based on complementary inertia weights (CIWP-PSO), and the Kapur entropy is employed as the optimization objective. Firstly, according to the fitness value, the particle swarm is divided into three-layer structure. To accommodate the larger search range caused by higher bit depth, the particles in the layer with the worst fitness value are employed random opposition learning strategy. Secondly, a pair of complementary inertia weights are introduced to balance the capability of exploitation and exploration. In the part of experiments, this paper used nine high-bit depth benchmark images to test the CIWP-PSO effectiveness. Then, a group of Brain Magnetic Resonance Imaging (MRI) images with 12-bit depth are utilized to validate the advantages of CIWP-PSO compared with other segmentation algorithms based on other optimization algorithms. According to the segmentation experimental results, thresholds optimized by CIWP-PSO could achieve higher Kapur entropy, and the multi-level thresholding segmentation algorithm based on CIWP-PSO outperforms the similar algorithms in high-bit depth image segmentation. Besides, we used image segmentation quality metrics to evaluate the impact of different segmentation algorithms on images, and the experimental results show that the MRI images segmented by the CIWP-PSO has achieved the best fitness value more times than images segmented by other comparison algorithm in terms of Structured Similarity Index and Feature Similarity Index, which explains that the images segmented by CIWP-PSO has higher image quality.

摘要

多阈值图像分割是一种广泛应用的图像分割方法,也是医学图像预处理的重要手段。最近,群体智能优化算法取代了原有的代价高昂的穷举搜索方法,用于确定医学图像的最优阈值,而医学图像往往具有较高的位深度。针对现有高比特深度图像分割优化算法存在的早熟收敛问题,提出了一种基于互补惯性权重的金字塔粒子群优化算法(CIWP-PSO),并采用Kapur熵作为优化目标。首先,根据适应度值将粒子群分为三层结构。为了适应较高位深度带来的更大搜索范围,对适应度值最差层的粒子采用随机反向学习策略。其次,引入一对互补惯性权重来平衡开发和探索能力。在实验部分,本文使用九幅高比特深度基准图像测试CIWP-PSO的有效性。然后,利用一组12比特深度的脑磁共振成像(MRI)图像验证CIWP-PSO相对于其他基于优化算法的分割算法的优势。根据分割实验结果,CIWP-PSO优化得到的阈值能够获得更高的Kapur熵,基于CIWP-PSO的多阈值分割算法在高比特深度图像分割方面优于同类算法。此外,使用图像分割质量指标评估不同分割算法对图像的影响,实验结果表明,在结构相似性指数和特征相似性指数方面,CIWP-PSO分割的MRI图像比其他比较算法分割的图像更多次地获得了最佳适应度值,这说明CIWP-PSO分割的图像具有更高的图像质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e045/11687925/c6549abef92d/pone.0306283.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验