Suppr超能文献

结合交叉算子和斐波那契搜索策略的自适应蛾火焰优化器用于新冠肺炎CT图像分割

Self-adaptive moth flame optimizer combined with crossover operator and Fibonacci search strategy for COVID-19 CT image segmentation.

作者信息

Kumar Sahoo Saroj, Houssein Essam H, Premkumar M, Kumar Saha Apu, Emam Marwa M

机构信息

Department of Mathematics, National Institute of Technology Agartala, Tripura 799046, India.

Faculty of Computers and Information, Minia University, Minia, Egypt.

出版信息

Expert Syst Appl. 2023 Oct 1;227:120367. doi: 10.1016/j.eswa.2023.120367. Epub 2023 May 6.

Abstract

The COVID-19 is one of the most significant obstacles that humanity is now facing. The use of computed tomography (CT) images is one method that can be utilized to recognize COVID-19 in early stage. In this study, an upgraded variant of Moth flame optimization algorithm (Es-MFO) is presented by considering a nonlinear self-adaptive parameter and a mathematical principle based on the Fibonacci approach method to achieve a higher level of accuracy in the classification of COVID-19 CT images. The proposed Es-MFO algorithm is evaluated using nineteen different basic benchmark functions, thirty and fifty dimensional IEEE CEC'2017 test functions, and compared the proficiency with a variety of other fundamental optimization techniques as well as MFO variants. Moreover, the suggested Es-MFO algorithm's robustness and durability has been evaluated with tests including the Friedman rank test and the Wilcoxon rank test, as well as a convergence analysis and a diversity analysis. Furthermore, the proposed Es-MFO algorithm resolves three CEC2020 engineering design problems to examine the problem-solving ability of the proposed method. The proposed Es-MFO algorithm is then used to solve the COVID-19 CT image segmentation problem using multi-level thresholding with the help of Otsu's method. Comparison results of the suggested Es-MFO with basic and MFO variants proved the superiority of the newly developed algorithm.

摘要

新冠病毒病是人类目前面临的最重大障碍之一。使用计算机断层扫描(CT)图像是一种可用于早期识别新冠病毒病的方法。在本研究中,通过考虑非线性自适应参数和基于斐波那契逼近法的数学原理,提出了蛾火焰优化算法的一种升级变体(Es-MFO),以在新冠病毒病CT图像分类中实现更高的准确率。使用19个不同的基本基准函数、30维和50维的IEEE CEC'2017测试函数对所提出的Es-MFO算法进行评估,并将其性能与多种其他基本优化技术以及MFO变体进行比较。此外,通过弗里德曼秩检验和威尔科克森秩检验等测试,以及收敛性分析和多样性分析,对所提出的Es-MFO算法的鲁棒性和耐久性进行了评估。此外,所提出的Es-MFO算法解决了三个CEC2020工程设计问题,以检验所提方法的问题解决能力。然后,借助大津法,使用所提出的Es-MFO算法通过多级阈值处理来解决新冠病毒病CT图像分割问题。所提出的Es-MFO与基本算法和MFO变体的比较结果证明了新开发算法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b460/10163947/bc7dcc2c192d/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验