Suppr超能文献

利用机器学习预测心力衰竭患者再入院风险以增强临床决策:预测模型开发研究

Enhancing Clinical Decision Making by Predicting Readmission Risk in Patients With Heart Failure Using Machine Learning: Predictive Model Development Study.

作者信息

Jiang Xiangkui, Wang Bingquan

机构信息

School of Automation, Xi'an University of Posts and Telecommunications, No. 563 Chang'an South Road, Yanta District, Xi'an, Shaanxi, 710121, China, 86 17810791125.

出版信息

JMIR Med Inform. 2024 Dec 31;12:e58812. doi: 10.2196/58812.

Abstract

BACKGROUND

Patients with heart failure frequently face the possibility of rehospitalization following an initial hospital stay, placing a significant burden on both patients and health care systems. Accurate predictive tools are crucial for guiding clinical decision-making and optimizing patient care. However, the effectiveness of existing models tailored specifically to the Chinese population is still limited.

OBJECTIVE

This study aimed to formulate a predictive model for assessing the likelihood of readmission among patients diagnosed with heart failure.

METHODS

In this study, we analyzed data from 1948 patients with heart failure in a hospital in Sichuan Province between 2016 and 2019. By applying 3 variable selection strategies, 29 relevant variables were identified. Subsequently, we constructed 6 predictive models using different algorithms: logistic regression, support vector machine, gradient boosting machine, Extreme Gradient Boosting, multilayer perception, and graph convolutional networks.

RESULTS

The graph convolutional network model showed the highest prediction accuracy with an area under the receiver operating characteristic curve of 0.831, accuracy of 75%, sensitivity of 52.12%, and specificity of 90.25%.

CONCLUSIONS

The model crafted in this study proves its effectiveness in forecasting the likelihood of readmission among patients with heart failure, thus serving as a crucial reference for clinical decision-making.

摘要

背景

心力衰竭患者在首次住院后经常面临再次住院的可能性,这给患者和医疗保健系统都带来了沉重负担。准确的预测工具对于指导临床决策和优化患者护理至关重要。然而,专门针对中国人群的现有模型的有效性仍然有限。

目的

本研究旨在建立一个预测模型,以评估诊断为心力衰竭的患者再次入院的可能性。

方法

在本研究中,我们分析了2016年至2019年四川省一家医院1948例心力衰竭患者的数据。通过应用3种变量选择策略,确定了29个相关变量。随后,我们使用不同算法构建了6个预测模型:逻辑回归、支持向量机、梯度提升机、极端梯度提升、多层感知器和图卷积网络。

结果

图卷积网络模型显示出最高的预测准确率,受试者工作特征曲线下面积为0.831,准确率为75%,灵敏度为52.12%,特异性为90.25%。

结论

本研究构建的模型证明了其在预测心力衰竭患者再次入院可能性方面的有效性,从而为临床决策提供了重要参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0c8/11706445/afda17a6a929/medinform-v12-e58812-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验