El Khayat Driaa Yassine, Maarir Hafida, Mennani Mehdi, Grimi Nabil, Moubarik Amine, Boussetta Nadia
Integrated Transformation and Renewable Matter TIMR (UTC/ESCOM), University of Technology of Compiegne- Alliance Sorbonne University, Centre of Research of Royallieu, Rue du docteur Schweitzer, CS 60319, 60203 Compiegne, France; Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, SBP: 592 Beni Mellal, Morocco.
Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, SBP: 592 Beni Mellal, Morocco.
Int J Biol Macromol. 2025 Mar;292:139319. doi: 10.1016/j.ijbiomac.2024.139319. Epub 2024 Dec 29.
Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods. The results revealed that the combined treatments achieved lignin and cellulose yields of up to 17.03 % and 33.40 %, respectively, with US and HVED showing significantly higher extraction efficiencies compared to other techniques. Characterization of the extracted materials using FTIR, XRD, 2D HSQC NMR, TGA/DTG, and DSC confirmed the presence of key functional groups, crystalline structures, and detailed molecular features, while also providing insights into thermal stability. These findings underscore the potential of walnut shells as a sustainable source for bio-based materials and demonstrate the influence of physical pretreatments on the structural and thermal properties of extracted cellulose and lignin. This study paves the way for further research into industrial applications, such as wood adhesives. Future work should focus on optimizing extraction processes, scaling up operations, and investigating the effects of biomass variability on extraction outcomes.
从生物质中提取纤维素和木质素对于可持续生物基材料的开发至关重要。本研究考察了物理预处理技术——超声(US)、脉冲电场(PEF)和高压放电(HVED)——对从核桃壳中提取纤维素和木质素的碱处理效率的影响。主要目标是提高提取率并改善提取物质量,同时评估这些方法的有效性。结果表明,联合处理分别实现了高达17.03%和33.40%的木质素和纤维素产率,与其他技术相比,超声和高压放电显示出显著更高的提取效率。使用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、二维异核单量子相干核磁共振(2D HSQC NMR)、热重分析/微商热重分析(TGA/DTG)和差示扫描量热法(DSC)对提取物进行表征,证实了关键官能团、晶体结构和详细分子特征的存在,同时也深入了解了热稳定性。这些发现突出了核桃壳作为生物基材料可持续来源的潜力,并证明了物理预处理对提取的纤维素和木质素的结构和热性能的影响。本研究为进一步开展诸如木材胶粘剂等工业应用研究铺平了道路。未来的工作应侧重于优化提取工艺、扩大操作规模以及研究生物质变异性对提取结果的影响。