Haque Md Ashraful, Nahin Kamal Hossain, Nirob Jamal Hossain, Ananta Redwan A, Sawaran Singh Narinderjit Singh, Paul Liton Chandra, Algarni Abeer D, ElAffendi Mohammed, Ateya Abdelhamied A
Department of Electrical and Electronic Engineering, Daffodil International University, Dhaka, 1207, Bangladesh.
Faculty of Data Science and Information Technology, INTI International University, Persiaran Perdana BBN, Putra Nilai, Negeri Sembilan, Nilai, 71800, Malaysia.
Sci Rep. 2024 Dec 31;14(1):32162. doi: 10.1038/s41598-024-79332-z.
This study discusses the results of using a regression machine learning technique to improve the performance of 6G applications that use multiple-input multiple-output (MIMO) antennas operating at the terahertz (THz) frequency band. This research evaluates an antenna's performance using various methodologies, such as simulation and RLC equivalent circuit models. The suggested design has a broad bandwidth of 2.5 THz and spans from 6.2 to 8.7 GHz, a maximum gain of 14.59 dB, and small dimensions (100 × 300) µm. It also has outstanding isolation exceeding - 31 dB with 96% efficiency. The ADS allowed us to confirm the accuracy of the CST results by creating a simulated version of the same RLC circuit. Reflection coefficients obtained from the CST and ADS simulators are similar. The supervised regression ML approach is employed accurately to predict the antenna's potential gain. Several metrics, such as the variance score, R square, mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE), can evaluate machine learning (ML) models. Out of the six machine learning models analyzed, the Extra Tree Regression model demonstrates the lowest error and achieves the highest level of accuracy in predicting gain.
本研究讨论了使用回归机器学习技术来提升在太赫兹(THz)频段运行的多输入多输出(MIMO)天线的6G应用性能的结果。本研究使用多种方法评估天线性能,如仿真和RLC等效电路模型。所建议的设计具有2.5 THz的宽带宽,频率范围为6.2至8.7 GHz,最大增益为14.59 dB,尺寸小(100×300)µm。它还具有超过 - 31 dB的出色隔离度和96%的效率。ADS使我们能够通过创建相同RLC电路的模拟版本来确认CST结果的准确性。从CST和ADS模拟器获得的反射系数相似。采用监督回归机器学习方法准确预测天线的潜在增益。几个指标,如方差得分、R平方、均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE),可用于评估机器学习(ML)模型。在所分析的六个机器学习模型中,Extra Tree回归模型显示出最低的误差,并在预测增益方面达到了最高的准确度。