Nahin Kamal Hossain, Nirob Jamal Hossain, Taki Akil Ahmad, Haque Md Ashraful, Singh Narinderjit Singh Sawaran, Paul Liton Chandra, Alkanhel Reem Ibrahim, Abdallah Hanaa A, Ateya Abdelhamied A, El-Latif Ahmed A Abd
Department of Electrical and Electronic Engineering, Daffodil International University, Dhaka, 1207, Bangladesh.
Faculty of Data Science and Information Technology, INTI International University, Negeri Sembilan, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Malaysia.
Sci Rep. 2025 Feb 4;15(1):4215. doi: 10.1038/s41598-025-88174-2.
This paper introduces the design and exploration of a compact, high-performance multiple-input multiple-output (MIMO) antenna for 6G applications operating in the terahertz (THz) frequency range. Leveraging a meta learner-based stacked generalization ensemble strategy, this study integrates classical machine learning techniques with an optimized multi-feature stacked ensemble to predict antenna properties with greater accuracy. Specifically, a neural network is applied as a base learner for predicting antenna parameters, resulting in increased predictive performance, achieving R², EVS, MSE, RMSE, and MAE values of 0.96, 0.998, 0.00842, 0.00453, and 0.00999, respectively. Utilizing regression-based machine learning, antenna parameters are optimized to attain dual-band resonance with bandwidths of 3.34 THz and 1 THz across two bands, ensuring robust data throughput and communication stability. The antenna, designed with dimensions of 70 × 280 μm², demonstrates a maximum gain of 15.82 dB, excellent isolation exceeding - 32.9 dB, and remarkable efficiency of 99.8%, underscoring its suitability for high-density, high-speed 6G environments. The design methodology integrates CST simulations and an RLC equivalent circuit model, substantiated by ADS simulations, with comparable reflection coefficients validating the accuracy of the models. With its compact footprint, broad bandwidth, and optimized isolation and efficiency, the proposed MIMO antenna is positioned as an ideal candidate for future 6G communication applications.
本文介绍了一种用于太赫兹(THz)频段6G应用的紧凑型、高性能多输入多输出(MIMO)天线的设计与探索。本研究利用基于元学习器的堆叠泛化集成策略,将经典机器学习技术与优化的多特征堆叠集成相结合,以更高的精度预测天线特性。具体而言,应用神经网络作为预测天线参数的基础学习器,从而提高预测性能,分别实现了0.96、0.998、0.00842、0.00453和0.00999的R²、EVS、MSE、RMSE和MAE值。利用基于回归的机器学习对天线参数进行优化,以在两个频段实现带宽分别为3.34 THz和1 THz的双频段谐振,确保强大的数据吞吐量和通信稳定性。该天线设计尺寸为70×280μm²,最大增益为15.82 dB,隔离度超过-32.9 dB,效率高达99.8%,突出了其适用于高密度、高速6G环境的特性。该设计方法集成了CST仿真和RLC等效电路模型,并通过ADS仿真进行了验证,具有可比的反射系数,验证了模型的准确性。凭借其紧凑的尺寸、宽带宽以及优化的隔离度和效率,所提出的MIMO天线被定位为未来6G通信应用的理想候选方案。