Suppr超能文献

用于生物医学物联网系统中实时远程患者监测的机器学习优化双频可穿戴天线。

Machine learning-optimized dual-band wearable antenna for real-time remote patient monitoring in biomedical IoT systems.

作者信息

Musa Umar, Smida Amor, Yahya Muhammad S, Waly Mohamed I, Tiang Jun Jiat, Mallat Nazih Khaddaj, Muhammad Surajo, Salisu Abubakar

机构信息

Department of Electrical Engineering, Bayero University Kano, Kano, 700006, Nigeria.

Department of Medical Equipment Technology, Majmaah University, 11952, Al-Majmaah, Saudi Arabia.

出版信息

Sci Rep. 2025 Aug 22;15(1):30943. doi: 10.1038/s41598-025-15984-9.

Abstract

This work presents a machine learning (ML)-optimized dual-band wearable antenna designed specifically for biomedical applications in healthcare monitoring. Fabricated on a Rogers substrate of 40 × 41 mm, the antenna operates at 2.4 GHz and 5.8 GHz with measured bandwidths of 4.5% and 2.9%, gains of 3.8 dBi and 6.0 dBi, and high radiation efficiencies (92% and 91.7%, respectively). Bidirectional and directional radiation patterns are noted in the E-plane, while the H-plane exhibits omnidirectional patterns at the lower and upper bands. To ensure the antenna's safety for biomedical use, specific absorption rate (SAR) assessments were conducted, CST MWS simulations evaluated the SAR of the proposed wearable antenna on arm, chest, and lap placements at 5 mm distance. At 2.4 GHz, 1 g/10 g SAR values were 0.533/0.919 W/kg (arm), 0.864/1.455 W/kg (chest), and 0.892/1.122 W/kg (lap). At 5.8 GHz, results were 0.872/1.241 W/kg (arm), 0.577/1.433 W/kg (chest), and 0.428/1.341 W/kg (lap), all well within safety limits. The proposed healthcare monitoring system integrates a SEN11547 pulse sensor and an LM35 temperature sensor to measure heart rate and body temperature, transmitting the data to the ThingSpeak IoT platform via the NodeMCU ESP-32S Wi-Fi module, ensuring real-time data availability. The heart rate ranged from 65 to 99 BPM, and the body temperature ranged from 30 to 37 °C. The supervised regression ML approach was effectively utilized to predict the antenna's reflection coefficient (S). Performance evaluation of the models employed metrics such as mean absolute error (MAE), mean squared error (MSE), root mean squared logarithmic error (RMSLE), mean squared logarithmic error (MSLE), and R-squared (R). The ensemble regression model outperformed others, delivering the lowest errors (MAE: 0.83%, MSE: 1.64%, RMSLE: 0.56%, RMSE: 1.83%, MSLE: 0.44%) and the highest accuracy (R: 97.79%) while reducing the computational time by 70% compared to conventional methods. Results validate the antenna's reliability and effectiveness for wearable healthcare applications.

摘要

这项工作展示了一种经过机器学习(ML)优化的双频段可穿戴天线,该天线专为医疗保健监测中的生物医学应用而设计。该天线制作在一块40×41毫米的罗杰斯基板上,工作在2.4吉赫兹和5.8吉赫兹频段,测得的带宽分别为4.5%和2.9%,增益分别为3.8 dBi和6.0 dBi,且具有较高的辐射效率(分别为92%和91.7%)。在E平面上观察到双向和定向辐射方向图,而H平面在较低和较高频段呈现全向方向图。为确保该天线用于生物医学的安全性,进行了比吸收率(SAR)评估,CST MWS模拟评估了所提出的可穿戴天线在手臂、胸部和膝盖放置位置且距离为5毫米时的SAR。在2.4吉赫兹时,1克/10克的SAR值分别为0.533/0.919瓦/千克(手臂)、0.864/1.455瓦/千克(胸部)和0.892/1.122瓦/千克(膝盖)。在5.8吉赫兹时,结果分别为0.872/1.241瓦/千克(手臂)、0.577/1.433瓦/千克(胸部)和0.428/1.341瓦/千克(膝盖),所有这些值均远低于安全限值。所提出的医疗保健监测系统集成了一个SEN11547脉搏传感器和一个LM35温度传感器来测量心率和体温,并通过NodeMCU ESP - 32S Wi - Fi模块将数据传输到ThingSpeak物联网平台,确保实时数据可用性。心率范围为65至99次/分钟,体温范围为30至37摄氏度。采用监督回归ML方法有效地预测了天线的反射系数(S)。所使用模型的性能评估采用了平均绝对误差(MAE)、均方误差(MSE)、均方根对数误差(RMSLE)、均方对数误差(MSLE)和决定系数(R)等指标。集成回归模型优于其他模型,产生了最低的误差(MAE:0.83%,MSE:1.64%,RMSLE:0.56%,RMSE:1.83%,MSLE:0.44%)和最高的准确率(R:97.79%),同时与传统方法相比,计算时间减少了70%。结果验证了该天线在可穿戴医疗保健应用中的可靠性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ee/12373866/359d25e9d7ae/41598_2025_15984_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验