Suppr超能文献

基于光栅的相衬计算机断层扫描的自监督去噪

Self-supervised denoising of grating-based phase-contrast computed tomography.

作者信息

Wirtensohn Sami, Schmid Clemens, Berthe Daniel, John Dominik, Heck Lisa, Taphorn Kirsten, Flenner Silja, Herzen Julia

机构信息

Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.

Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.

出版信息

Sci Rep. 2024 Dec 31;14(1):32169. doi: 10.1038/s41598-024-83517-x.

Abstract

In the last decade, grating-based phase-contrast computed tomography (gbPC-CT) has received growing interest. It provides additional information about the refractive index decrement in the sample. This signal shows an increased soft-tissue contrast. However, the resolution dependence of the signal poses a challenge: its contrast enhancement is overcompensated by the low resolution in low-dose applications such as clinical computed tomography. As a result, the implementation of gbPC-CT is currently tied to a higher dose. To reduce the dose, we introduce the self-supervised deep learning network Noise2Inverse into the field of gbPC-CT. We evaluate the behavior of the Noise2Inverse parameters on the phase-contrast results. Afterward, we compare its results with other denoising methods, namely the Statistical Iterative Reconstruction, Block Matching 3D, and Patchwise Phase Retrieval. In the example of Noise2Inverse, we show that deep learning networks can deliver superior denoising results with respect to the investigated image quality metrics. Their application allows to increase the resolution while maintaining the dose. At higher resolutions, gbPC-CT can naturally deliver higher contrast than conventional absorption-based CT. Therefore, the application of machine learning-based denoisers shifts the dose-normalized image quality in favor of gbPC-CT, bringing it one step closer to medical application.

摘要

在过去十年中,基于光栅的相衬计算机断层扫描(gbPC-CT)越来越受到关注。它提供了有关样品中折射率递减的额外信息。该信号显示出软组织对比度增加。然而,信号对分辨率的依赖性带来了一个挑战:在临床计算机断层扫描等低剂量应用中,其对比度增强被低分辨率过度补偿。因此,gbPC-CT目前的应用与更高的剂量相关。为了降低剂量,我们将自监督深度学习网络Noise2Inverse引入gbPC-CT领域。我们评估了Noise2Inverse参数在相衬结果上的表现。之后,我们将其结果与其他去噪方法进行比较,即统计迭代重建、三维块匹配和逐块相位检索。以Noise2Inverse为例,我们表明深度学习网络在研究的图像质量指标方面可以提供卓越的去噪结果。它们的应用能够在保持剂量的同时提高分辨率。在更高分辨率下,gbPC-CT自然可以比传统的基于吸收的CT提供更高的对比度。因此,基于机器学习的去噪器的应用使剂量归一化图像质量向有利于gbPC-CT的方向转变,使其更接近医学应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b32f/11688505/d24c8033509c/41598_2024_83517_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验