Suppr超能文献

用于高性能钙钛矿太阳能电池的一维纤铁矿基TiO纳米丝界面工程

Interfacial Engineering with One-Dimensional Lepidocrocite TiO-Based Nanofilaments for High-Performance Perovskite Solar Cells.

作者信息

Panigrahi Shrabani, Badr Hussein O, Deuermeier Jonas, Jana Santanu, Fortunato Elvira, Martins Rodrigo, Barsoum Michel W

机构信息

i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal.

Department of Material Science and Engineering, Drexel University, Philadelphia 19104, Pennsylvania, United States.

出版信息

ACS Omega. 2024 Dec 13;9(51):50820-50829. doi: 10.1021/acsomega.4c09516. eCollection 2024 Dec 24.

Abstract

The optimization of nonradiative recombination losses through interface engineering is key to the development of efficient, stable, and hysteresis-free perovskite solar cells (PSCs). In this study, for the first time in solar cell technology, we present a novel approach to interface modification by employing one-dimensional lepidocrocite (henceforth referred to as 1DL) TiO-based nanofilaments, NFs, between the mesoporous TiO (mp TiO) and halide perovskite film in PSCs to improve both the efficiency and stability of the devices. The 1DLs can be easily produced on the kilogram scale starting with cheap and earth-abundant precursor powders, such as TiC, TiN, TiB, etc., and a common organic base like tetramethylammonium hydroxide. Notably, the 1DL deposition influenced perovskite grain development, resulting in a larger grain size and a more compact perovskite layer. Additionally, it minimized trap centers in the material and reduced charge recombination processes, as confirmed by the photoluminescence analysis. The overall promotion led to an improved power conversion efficiency (PCE) from 13 ± 3.2 to 16 ± 1.8% after interface modification. The champion PCE for the 1DL-containing devices is 17.82%, which is higher than that of 16.17% for the control devices. The passivation effect is further demonstrated by evaluating the stability of PSCs under ambient conditions, wherein the 1DL-containing PSCs maintain ∼87% of their initial efficiency after 120 days. This work provides not only cost-effective, novel, and promising materials for cathode interface engineering but also an effective approach to achieve high-efficiency PSCs with long-term stability devoid of encapsulation.

摘要

通过界面工程优化非辐射复合损失是高效、稳定且无滞后的钙钛矿太阳能电池(PSC)发展的关键。在本研究中,我们在太阳能电池技术领域首次提出了一种新颖的界面修饰方法,即在PSC的介孔TiO(mp TiO)和卤化物钙钛矿薄膜之间采用一维纤铁矿(以下简称1DL)TiO基纳米丝(NFs),以提高器件的效率和稳定性。1DL可以从廉价且储量丰富的前驱体粉末(如TiC、TiN、TiB等)和一种常见的有机碱(如氢氧化四甲铵)开始,轻松地以千克规模生产。值得注意的是,1DL的沉积影响了钙钛矿晶粒的生长,导致晶粒尺寸更大且钙钛矿层更致密。此外,如光致发光分析所证实的,它使材料中的陷阱中心最小化,并减少了电荷复合过程。总体促进作用使得界面修饰后功率转换效率(PCE)从13±3.2%提高到了16±1.8%。含1DL器件的最佳PCE为17.82%,高于对照器件的16.17%。通过评估PSC在环境条件下的稳定性进一步证明了钝化效果,其中含1DL的PSC在120天后保持其初始效率的约87%。这项工作不仅为阴极界面工程提供了具有成本效益、新颖且有前景的材料,还提供了一种有效的方法来实现无需封装即可长期稳定的高效PSC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验