Cao Xinwei, Lou Junchao, Liao Bolin, Peng Chen, Pu Xujin, Khan Ameer Tamoor, Pham Duc Truong, Li Shuai
School of Business, Jiangnan University, Wuxi, China.
Research Center for Socialism with Chinese Characteristics, Zhejiang University, Hangzhou, China.
Neural Netw. 2025 Apr;184:107090. doi: 10.1016/j.neunet.2024.107090. Epub 2024 Dec 28.
Real-time online optimisation plays a crucial role in high-frequency trading (HFT) strategies. The Markowitz model, as a Nobel Prize-winning framework, is widely used for portfolio management optimisation by framing the problem as a constrained quadratic programming task. While conventional analytical methods are typically effective for solving quadratic programming problems with linear constraints, the introduction of both linear equality and inequality constraints in the Markowitz model necessitates the use of numerical methods. The complexity of these numerical solutions presents technical challenges for real-time online optimisation, especially in HFT environments where computational speed and efficiency are critical. To address this challenge, we propose a simplified model that decomposes the problem into analytically solvable and unsolvable components, alongside an innovative dynamic neural network designed to quickly solve the unsolvable components. Overall, this method helps reduce computational load and is well-suited for real-time online computations in HFT settings. Furthermore, we conducted a theoretical analysis and proof of the optimality and global convergence of the solutions obtained using this method. Finally, based on a large set of real stock data, we performed three numerical experiments to validate its effectiveness. Notably, in an experiment using Dow Jones Industrial Average (DJIA) stock data, our approach reduced total costs by 5.54% compared to the commonly used MATLAB quadprog() solver, demonstrating the potential of this method as an efficient tool for portfolio management in HFT scenarios.
实时在线优化在高频交易(HFT)策略中起着至关重要的作用。作为一个获得诺贝尔奖的框架,马科维茨模型通过将问题构建为一个约束二次规划任务,被广泛用于投资组合管理优化。虽然传统的解析方法通常对解决具有线性约束的二次规划问题有效,但马科维茨模型中同时引入线性等式和不等式约束使得必须使用数值方法。这些数值解的复杂性给实时在线优化带来了技术挑战,尤其是在计算速度和效率至关重要的高频交易环境中。为应对这一挑战,我们提出了一个简化模型,该模型将问题分解为可解析求解和不可解析求解的组件,同时还设计了一个创新的动态神经网络来快速求解不可解析求解的组件。总体而言,这种方法有助于减少计算量,非常适合高频交易环境中的实时在线计算。此外,我们对使用该方法获得的解进行了最优性和全局收敛性的理论分析与证明。最后,基于大量真实股票数据,我们进行了三个数值实验以验证其有效性。值得注意的是,在一个使用道琼斯工业平均指数(DJIA)股票数据的实验中,与常用的MATLAB quadprog()求解器相比,我们的方法使总成本降低了5.54%,证明了该方法作为高频交易场景中投资组合管理的有效工具的潜力。