Lomer Nima Broomand, Ashoobi Mohammad Amin, Ahmadzadeh Amir Mahmoud, Sotoudeh Houman, Tabari Azadeh, Torigian Drew A
Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran (N.B.L.).
Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran (M.A.A.).
Acad Radiol. 2025 Jun;32(6):3429-3452. doi: 10.1016/j.acra.2024.12.006. Epub 2024 Dec 31.
Prostate cancer (PCa) is the second most common cancer among men and a leading cause of cancer-related mortalities. Radiomics has shown promising performances in the classification of PCa grade group (GG) in several studies. Here, we aimed to systematically review and meta-analyze the performance of radiomics in predicting GG in PCa.
Adhering to PRISMA-DTA guidelines, we included studies employing magnetic resonance imaging-derived radiomics for predicting GG, with histopathologic evaluations as the reference standard. Databases searched included Web of Sciences, PubMed, Scopus, and Embase. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and METhodological RadiomICs Score (METRICS) tools were used for quality assessment. Pooled estimates for sensitivity, specificity, likelihood ratios, diagnostic odds ratio, and area under the curve (AUC) were calculated. Cochran's Q and I-squared tests assessed heterogeneity, while meta-regression, subgroup analysis, and sensitivity analysis addressed potential sources. Publication bias was evaluated using Deek's funnel plot, while clinical applicability was assessed with Fagan nomograms and likelihood ratio scattergrams.
Data were extracted from 43 studies involving 9983 patients. Radiomics models demonstrated high accuracy in predicting GG. Patient-based analyses yielded AUCs of 0.93 for GG≥2, 0.91 for GG≥3, and 0.93 for GG≥4. Lesion-based analyses showed AUCs of 0.84 for GG≥2 and 0.89 for GG≥3. Significant heterogeneity was observed, and meta-regression identified sources of heterogeneity. Radiomics model showed moderate power to exclude and confirm the GG.
Radiomics appears to be an accurate noninvasive tool for predicting PCa GG. It improves the performance of standard diagnostic methods, enhancing clinical decision-making.
前列腺癌(PCa)是男性中第二常见的癌症,也是癌症相关死亡的主要原因。在多项研究中,放射组学在前列腺癌分级组(GG)分类方面表现出了良好的性能。在此,我们旨在系统评价和荟萃分析放射组学在预测前列腺癌GG方面的性能。
遵循PRISMA-DTA指南,我们纳入了采用磁共振成像衍生的放射组学预测GG的研究,并以组织病理学评估作为参考标准。检索的数据库包括Web of Sciences、PubMed、Scopus和Embase。使用诊断准确性研究质量评估2(QUADAS-2)和放射组学方法评分(METRICS)工具进行质量评估。计算敏感性、特异性、似然比、诊断比值比和曲线下面积(AUC)的合并估计值。采用Cochran's Q检验和I²检验评估异质性,同时进行meta回归、亚组分析和敏感性分析以探讨潜在来源。使用Deek漏斗图评估发表偏倚,使用Fagan列线图和似然比散点图评估临床适用性。
从43项涉及9983例患者的研究中提取数据。放射组学模型在预测GG方面显示出较高的准确性。基于患者的分析中,GG≥2时AUC为0.93,GG≥3时为0.91,GG≥4时为0.93。基于病灶的分析中,GG≥2时AUC为0.84,GG≥3时为0.89。观察到显著的异质性,meta回归确定了异质性来源。放射组学模型在排除和确认GG方面显示出中等效力。
放射组学似乎是一种准确的非侵入性工具,可用于预测前列腺癌GG。它提高了标准诊断方法的性能,增强了临床决策。