Carlson Rhea, Comrie Courtney, Bonaventura Justina, Morara Kellys, Daigle Noelle, Hutchinson Elizabeth, Sawyer Travis W
University of Arizona, College of Biomedical Engineering, Tucson, Arizona, United States.
University of Arizona, Wyant College of Optical Sciences, Tucson, Arizona, United States.
J Med Imaging (Bellingham). 2025 Jan;12(1):016001. doi: 10.1117/1.JMI.12.1.016001. Epub 2024 Dec 31.
Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods. By comparing complete PLI to dMRI within the ferret optic chiasm (OC), we may investigate the potential of this PLI technique as a dMRI validation tool and gain insight into the microstructural and orientational sensitivity of this imaging method in different tissue thicknesses.
Post-mortem ferret brain tissue samples (whole brain, and OC, ) were imaged with both dMRI and complete backscattering Mueller matrix PLI. The specimens were sectioned and then reimaged with PLI. Region of interest and correlation analyses were performed on scalar metrics and orientation vectors of both dMRI and PLI in the coherent optic nerve and crossing chiasm.
Optical retardance and dMRI fractional anisotropy showed similar trends between metric values and were strongly correlated, indicating a bias to macroscale architecture in retardance. Thick tissue displays comparable orientation between the diattenuation angle and dMRI fiber orientation distribution glyphs that are not evident in the retardance angle.
We demonstrate that backscattering Mueller matrix PLI shows potential as a tool for microstructural dMRI validation in thick tissue specimens. Performing complete polarimetry can provide directional characterization and potentially microscale anisotropy information not available by conventional PLI alone.
扩散磁共振成像(dMRI)可定量评估脑微观结构,扩散张量成像术是一种临床应用的框架。为了推进此类dMRI方法,微观尺度各向异性与方向之间的直接定量比较势在必行。全背向散射穆勒矩阵偏振光成像(PLI)能够对薄组织和厚组织标本进行成像,以获取许多传统透射PLI方法无法获得的光学指标。通过在雪貂视交叉(OC)内将全PLI与dMRI进行比较,我们可以研究这种PLI技术作为dMRI验证工具的潜力,并深入了解这种成像方法在不同组织厚度下的微观结构和方向敏感性。
对死后雪貂脑组织样本(全脑和OC)进行dMRI和全背向散射穆勒矩阵PLI成像。将标本切片,然后用PLI重新成像。对视神经和交叉视交叉中dMRI和PLI的标量指标和方向向量进行感兴趣区域分析和相关性分析。
光学延迟和dMRI分数各向异性在指标值之间显示出相似的趋势,并且具有很强的相关性,表明延迟对宏观结构存在偏差。厚组织在衰减角和dMRI纤维方向分布图标之间显示出可比的方向,这在延迟角中并不明显。
我们证明,背向散射穆勒矩阵PLI显示出作为厚组织标本中微观结构dMRI验证工具的潜力。进行全偏振测量可以提供传统PLI单独无法获得的方向特征和潜在的微观尺度各向异性信息。