Suppr超能文献

AGMA-PESS:一种基于深度学习的婴儿姿势估计器和序列选择器软件,用于一般运动评估。

AGMA-PESS: a deep learning-based infant pose estimator and sequence selector software for general movement assessment.

作者信息

Soualmi Ameur, Alata Olivier, Ducottet Christophe, Petitjean-Robert Anne, Plat Aurélie, Patural Hugues, Giraud Antoine

机构信息

Laboratoire Hubert Curien UMR 5516, CNRS, Institut d'Optique Graduate School Université Jean Monnet Saint-Etienne, Saint-Etienne, France.

INSERM, U1059 SAINBIOSE, Université Jean Monnet, Saint-Étienne, France.

出版信息

Front Pediatr. 2024 Dec 18;12:1465632. doi: 10.3389/fped.2024.1465632. eCollection 2024.

Abstract

The General Movement Assessment (GMA) is a validated evaluation of brain maturation essential to shaping early individual developmental trajectories of preterm infants. To ensure a reliable GMA, preterm infants should be recorded for 30 to 60 min before manually selecting at least three sequences with general movements. This time-consuming task of manually selecting short video sequences from lengthy recordings impedes its implementation within the Neonatal Unit. Moreover, an accurate pose estimation tool for preterm infants is paramount to developing the field of GMA automation. We introduce the AGMA Pose Estimator and Sequence Selector (AGMA-PESS) software, based on the state-of-the-art deep learning infant pose estimation network, to automatically select the video sequences for GMA at preterm and writhing ages and estimate the pose of infants in 2D. Its simplicity and efficiency make AGMA-PESS a valuable tool to promote GMA use within the Neonatal Unit, both for clinical practice and research purposes.

摘要

全身运动评估(GMA)是一种经过验证的对大脑成熟度的评估,对于塑造早产儿早期个体发育轨迹至关重要。为确保可靠的GMA,应在手动选择至少三个具有全身运动的序列之前,对早产儿进行30至60分钟的记录。从冗长的记录中手动选择短视频序列这项耗时的任务阻碍了其在新生儿病房的实施。此外,用于早产儿的精确姿势估计工具对于GMA自动化领域的发展至关重要。我们基于最先进的深度学习婴儿姿势估计网络,引入了AGMA姿势估计器和序列选择器(AGMA-PESS)软件,以自动选择早产儿和扭动期婴儿的GMA视频序列,并估计婴儿的二维姿势。其简单性和高效性使AGMA-PESS成为促进新生儿病房在临床实践和研究中使用GMA的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf33/11688355/a783e49f4e51/fped-12-1465632-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验