Häußler Sophia Marie, Betz Christian S, Della Seta Marta, Eggert Dennis, Schlaefer Alexander, Bhattacharya Debayan
Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Institute of Radiology, Charité-Universitätsmedizin Berlin, Berlin Humboldt Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
Laryngoscope. 2025 Apr;135(4):1301-1308. doi: 10.1002/lary.31979. Epub 2025 Jan 2.
Automatic segmentation and detection of vestibular schwannoma (VS) in MRI by deep learning is an upcoming topic. However, deep learning faces generalization challenges due to tumor variability even though measurements and segmentation of VS are essential for growth monitoring and treatment planning. Therefore, we introduce a novel model combining two Convolutional Neural Network (CNN) models for the detection of VS by deep learning aiming to improve performance of automatic segmentation.
Deep learning techniques have been employed for automatic VS tumor segmentation, including 2D, 2.5D, and 3D UNet-like architectures, which is a specific CNN designed to improve automatic segmentation for medical imaging. Specifically, we introduce a sequential connection where the first UNet's predicted segmentation map is passed to a second complementary network for refinement. Additionally, spatial attention mechanisms are utilized to further guide refinement in the second network.
We conducted experiments on both public and private datasets containing contrast-enhanced T1 and high-resolution T2-weighted magnetic resonance imaging (MRI). Across the public dataset, we observed consistent improvements in Dice scores for all variants of 2D, 2.5D, and 3D CNN methods, with a notable enhancement of 8.86% for the 2D UNet variant on T1. In our private dataset, a 3.75% improvement was reported for 2D T1. Moreover, we found that T1 images generally outperformed T2 in VS segmentation.
We demonstrate that sequential connection of UNets combined with spatial attention mechanisms enhances VS segmentation performance across state-of-the-art 2D, 2.5D, and 3D deep learning methods.
3 Laryngoscope, 135:1301-1308, 2025.
通过深度学习对磁共振成像(MRI)中的前庭神经鞘瘤(VS)进行自动分割和检测是一个新兴的课题。然而,尽管VS的测量和分割对于生长监测和治疗规划至关重要,但由于肿瘤的变异性,深度学习面临着泛化挑战。因此,我们引入了一种结合两个卷积神经网络(CNN)模型的新型模型,用于通过深度学习检测VS,旨在提高自动分割的性能。
深度学习技术已被用于VS肿瘤的自动分割,包括2D、2.5D和3D类U-Net架构,这是一种专门为改善医学成像的自动分割而设计的特定CNN。具体而言,我们引入了一种顺序连接,其中第一个U-Net的预测分割图被传递到第二个互补网络进行细化。此外,利用空间注意力机制在第二个网络中进一步指导细化。
我们在包含对比增强T1和高分辨率T2加权磁共振成像(MRI)的公共和私有数据集上进行了实验。在公共数据集中,我们观察到2D、2.5D和3D CNN方法的所有变体在Dice分数上都有一致的提高,其中2D U-Net变体在T1上显著提高了8.86%。在我们的私有数据集中,2D T1报告有3.75%的提高。此外,我们发现T1图像在VS分割中通常优于T2图像。
我们证明,U-Net的顺序连接与空间注意力机制相结合,提高了VS在最先进的2D、2.5D和3D深度学习方法中的分割性能。
3 喉镜,135:1301-1308,2025。