Suppr超能文献

基于深度神经网络的 T1 加权 MRI 自动分割前庭神经鞘瘤。

Automatic segmentation of vestibular schwannomas from T1-weighted MRI with a deep neural network.

机构信息

Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, 10016, USA.

Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, 10016, USA.

出版信息

Radiat Oncol. 2023 May 8;18(1):78. doi: 10.1186/s13014-023-02263-y.

Abstract

BACKGROUND

Long-term follow-up using volumetric measurement could significantly assist in the management of vestibular schwannomas (VS). Manual segmentation of VS from MRI for treatment planning and follow-up assessment is labor-intensive and time-consuming. This study aims to develop a deep learning technique to fully automatically segment VS from MRI.

METHODS

This study retrospectively analyzed MRI data of 737 patients who received gamma knife radiosurgery for VS. Treatment planning T1-weighted isotropic MR and manually contoured gross tumor volumes (GTV) were used for model development. A 3D convolutional neural network (CNN) was built on ResNet blocks. Spatial attenuation and deep supervision modules were integrated in each decoder level to enhance the training for the small tumor volume on brain MRI. The model was trained and tested on 587 and 150 patient data, respectively, from this institution (n = 495) and a publicly available dataset (n = 242). The model performance were assessed by the Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), average symmetric surface (ASSD) and relative absolute volume difference (RAVD) of the model segmentation results against the GTVs.

RESULTS

Measured on combined testing data from two institutions, the proposed method achieved mean DSC of 0.91 ± 0.08, ASSD of 0.3 ± 0.4 mm, HD95 of 1.3 ± 1.6 mm, and RAVD of 0.09 ± 0.15. The DSCs were 0.91 ± 0.09 and 0.92 ± 0.06 on 100 testing patients of this institution and 50 of the public data, respectively.

CONCLUSIONS

A CNN model was developed for fully automated segmentation of VS on T1-Weighted isotropic MRI. The model achieved good performance compared with physician clinical delineations on a sizeable dataset from two institutions. The proposed method potentially facilitates clinical workflow of radiosurgery for VS patient management.

摘要

背景

使用容积测量进行长期随访可以显著辅助前庭神经鞘瘤(VS)的管理。为了治疗计划和随访评估,手动从 MRI 中分割 VS 是一项劳动密集型且耗时的工作。本研究旨在开发一种深度学习技术,以实现从 MRI 中全自动分割 VS。

方法

本研究回顾性分析了 737 例接受伽玛刀放射外科治疗 VS 的患者的 MRI 数据。治疗计划 T1 加权各向同性 MRI 和手动勾画的大体肿瘤体积(GTV)用于模型开发。在 ResNet 块上构建了一个 3D 卷积神经网络(CNN)。在每个解码器级别集成了空间衰减和深度监督模块,以增强对脑 MRI 中小肿瘤体积的训练。该模型分别在本机构(n=495)和一个公开可用数据集(n=242)的 587 名和 150 名患者数据上进行了训练和测试。通过 Dice 相似系数(DSC)、95% Hausdorff 距离(HD95)、平均对称表面(ASSD)和模型分割结果与 GTV 之间的相对绝对体积差异(RAVD)评估模型性能。

结果

在来自两个机构的联合测试数据上进行测量,所提出的方法的平均 DSC 为 0.91±0.08,ASSD 为 0.3±0.4mm,HD95 为 1.3±1.6mm,RAVD 为 0.09±0.15。该机构的 100 名测试患者和 50 名公共数据的 DSCs 分别为 0.91±0.09 和 0.92±0.06。

结论

开发了一种用于 T1 加权各向同性 MRI 上全自动分割 VS 的 CNN 模型。该模型在来自两个机构的相当大的数据集上与医生的临床勾画相比表现出良好的性能。该方法可能有助于 VS 患者管理的放射外科临床工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d47/10169364/bf01ca905d57/13014_2023_2263_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验