Inskeep William P, Jay Zackary J, McKay Luke J, Dlakić Mensur
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
Nat Commun. 2025 Jan 2;16(1):277. doi: 10.1038/s41467-024-55079-z.
Thermophilic microbial communities growing in low-oxygen environments often contain early-evolved archaea and bacteria, which hold clues regarding mechanisms of cellular respiration relevant to early life. Here, we conducted replicate metagenomic, metatranscriptomic, microscopic, and geochemical analyses on two hyperthermophilic (82-84 °C) filamentous microbial communities (Conch and Octopus Springs, Yellowstone National Park, WY) to understand the role of oxygen, sulfur, and arsenic in energy conservation and community composition. We report that hyperthermophiles within the Aquificota (Thermocrinis), Pyropristinus (Caldipriscus), and Thermoproteota (Pyrobaculum) are abundant in both communities; however, higher oxygen results in a greater diversity of aerobic heterotrophs. Metatranscriptomics revealed major shifts in respiratory pathways of keystone chemolithotrophs due to differences in oxygen versus sulfide. Specifically, early-evolved hyperthermophiles express high levels of high-affinity cytochrome bd and CydAA' oxidases in suboxic sulfidic environments and low-affinity heme Cu oxidases under microaerobic conditions. These energy-conservation mechanisms using cytochrome oxidases in high-temperature, low-oxygen habitats likely played a crucial role in the early evolution of microbial life.
生长在低氧环境中的嗜热微生物群落通常包含早期进化的古菌和细菌,它们为与早期生命相关的细胞呼吸机制提供了线索。在这里,我们对两个超嗜热(82 - 84°C)丝状微生物群落(怀俄明州黄石国家公园的海螺泉和章鱼泉)进行了重复的宏基因组、宏转录组、显微镜和地球化学分析,以了解氧气、硫和砷在能量守恒和群落组成中的作用。我们报告说,Aquificota(嗜热栖热菌属)、Pyropristinus(热原栖菌属)和Thermoproteota(嗜热栖热杆菌属)中的超嗜热菌在这两个群落中都很丰富;然而,较高的氧气含量会导致需氧异养生物的多样性增加。宏转录组学揭示了关键化能自养生物呼吸途径的主要变化,这是由于氧气与硫化物的差异所致。具体而言,早期进化的超嗜热菌在亚oxic硫化环境中表达高水平的高亲和力细胞色素bd和CydAA'氧化酶,而在微需氧条件下表达低亲和力血红素铜氧化酶。这些在高温、低氧栖息地中使用细胞色素氧化酶的能量守恒机制可能在微生物生命的早期进化中发挥了关键作用。