Suppr超能文献

基于数据驱动的胸部 CT 检出肺结节风险分层与精准管理

Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography.

机构信息

Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China.

Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.

出版信息

Nat Med. 2024 Nov;30(11):3184-3195. doi: 10.1038/s41591-024-03211-3. Epub 2024 Sep 17.

Abstract

The widespread implementation of low-dose computed tomography (LDCT) in lung cancer screening has led to the increasing detection of pulmonary nodules. However, precisely evaluating the malignancy risk of pulmonary nodules remains a formidable challenge. Here we propose a triage-driven Chinese Lung Nodules Reporting and Data System (C-Lung-RADS) utilizing a medical checkup cohort of 45,064 cases. The system was operated in a stepwise fashion, initially distinguishing low-, mid-, high- and extremely high-risk nodules based on their size and density. Subsequently, it progressively integrated imaging information, demographic characteristics and follow-up data to pinpoint suspicious malignant nodules and refine the risk scale. The multidimensional system achieved a state-of-the-art performance with an area under the curve (AUC) of 0.918 (95% confidence interval (CI) 0.918-0.919) on the internal testing dataset, outperforming the single-dimensional approach (AUC of 0.881, 95% CI 0.880-0.882). Moreover, C-Lung-RADS exhibited a superior sensitivity compared with Lung-RADS v2022 (87.1% versus 63.3%) in an independent cohort, which was screened using mobile computed tomography scanners to broaden screening accessibility in resource-constrained settings. With its foundation in precise risk stratification and tailored management, this system has minimized unnecessary invasive procedures for low-risk cases and recommended prompt intervention for extremely high-risk nodules to avert diagnostic delays. This approach has the potential to enhance the decision-making paradigm and facilitate a more efficient diagnosis of lung cancer during routine checkups as well as screening scenarios.

摘要

低剂量计算机断层扫描(LDCT)在肺癌筛查中的广泛应用导致了肺结节的检出率不断增加。然而,准确评估肺结节的恶性风险仍然是一个巨大的挑战。在这里,我们提出了一种基于体检队列的 45064 例病例的分诊驱动式中国肺结节报告和数据系统(C-Lung-RADS)。该系统采用逐步式操作,首先根据结节的大小和密度将其分为低危、中危、高危和极高危结节。随后,它逐步整合影像学信息、人口统计学特征和随访数据,以确定可疑恶性结节并细化风险分级。该多维系统在内部测试数据集上的表现出色,曲线下面积(AUC)为 0.918(95%置信区间(CI)为 0.918-0.919),优于单维方法(AUC 为 0.881,95%CI 为 0.880-0.882)。此外,C-Lung-RADS 在使用移动计算机断层扫描进行筛查的独立队列中的敏感性优于 Lung-RADS v2022(87.1%对 63.3%),从而拓宽了资源有限环境下的筛查可及性。该系统基于精确的风险分层和针对性的管理,最大限度地减少了低危病例的不必要侵入性操作,并建议对极高危结节进行及时干预,以避免诊断延误。这种方法有可能增强决策范式,并在常规体检和筛查场景中更有效地诊断肺癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddea/11564084/3651d50ae4fa/41591_2024_3211_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验