CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
Dalian National Laboratory for Clean Energy, Dalian, 116023, China.
Angew Chem Int Ed Engl. 2023 Jun 5;62(23):e202219076. doi: 10.1002/anie.202219076. Epub 2023 Mar 20.
Natural photosynthesis (NP) generates oxygen and carbohydrates from water and CO utilizing solar energy to nourish lives and balance CO levels. Following nature, artificial photosynthesis (AP), typically, overall water or CO splitting, produces fuels and chemicals from renewable energy. However, hydrogen evolution or CO reduction is inherently coupled with kinetically sluggish water oxidation, lowering efficiencies and raising safety concerns. Decoupled systems have thus emerged. In this review, we elaborate how decoupled artificial photosynthesis (DAP) evolves from NP and AP and unveil their distinct photoelectrochemical mechanisms in energy capture, transduction and conversion. Advances of AP and DAP are summarized in terms of photochemical (PC), photoelectrochemical (PEC), and photovoltaic-electrochemical (PV-EC) catalysis based on material and device design. The energy transduction process of DAP is emphasized. Challenges and perspectives on future researches are also presented.
自然光合作用(NP)利用太阳能从水和 CO 中产生氧气和碳水化合物,为生命提供营养并平衡 CO 水平。受自然启发,人工光合作用(AP)通常是通过整体水或 CO 分解,利用可再生能源生产燃料和化学品。然而,氢的演化或 CO 的还原与动力学上缓慢的水氧化过程固有地耦合在一起,降低了效率并引发了安全问题。因此,出现了解耦系统。在这篇综述中,我们详细阐述了从 NP 和 AP 中发展而来的解耦人工光合作用(DAP),并揭示了它们在能量捕获、传递和转换方面不同的光电化学机制。根据材料和器件设计,总结了 AP 和 DAP 的光化学(PC)、光电化学(PEC)和光伏电化学(PV-EC)催化方面的进展。强调了 DAP 的能量传递过程。还提出了对未来研究的挑战和展望。