Suppr超能文献

一种基于改进YOLOv5的绝缘子目标检测算法。

An insulator target detection algorithm based on improved YOLOv5.

作者信息

Zeng Bing, Zhou Zhihao, Zhou Yu, He Dilin, Liao Zhanpeng, Jin Zihan, Zhou Yulu, Yi Kexin, Xie Yunmin, Zhang Wenhua

机构信息

Nanchang Institute of Technology, Nanchang, 330099, China.

出版信息

Sci Rep. 2025 Jan 2;15(1):496. doi: 10.1038/s41598-024-84623-6.

Abstract

Drone inspections are widely utilized in the detection of insulators in power lines. To address issues with traditional object detection algorithms, such as large parameter counts, low detection accuracy, and high miss rates, this paper proposes an insulator detection algorithm based on an improved YOLOv5 model. Firstly, in the backbone and neck networks, a lightweight CSP-SCConv module is employed to replace the original CSP-Darknet53 module, thereby reducing the parameter count and enhancing the feature extraction capabilities. Secondly, to broaden the image receptive field and improve feature fusion, a Receptive Field Block (RFB) model is incorporated into the neck network, replacing the original Spatial Pyramid Pooling Fast (SPPF) module. Additionally, a Lattice Structured Kernel (LSKBlock) attention mechanism is appended at the end of the neck network to further obtain richer semantic information. Finally, to flexibly improve the accuracy of bounding boxes of different sizes and enhance the robustness of the model, an [Formula: see text] loss function is utilized to replace the original Complete Intersection Over Union (CIOU) loss function. Experimental results demonstrate that the improved YOLOv5 model achieves a mean Average Precision (mAP) precision of 95.60%, with a parameter count of 18.36 M and a computational load of 30.10G, respectively. The Precision (P) and Recall (R) are 88.10% and 95.20%, providing strong support for deployment on mobile devices for real-time detection.

摘要

无人机巡检在电力线路绝缘子检测中得到广泛应用。针对传统目标检测算法存在的参数数量大、检测精度低和漏检率高等问题,本文提出了一种基于改进YOLOv5模型的绝缘子检测算法。首先,在主干网络和颈部网络中,采用轻量级CSP-SCConv模块替换原来的CSP-Darknet53模块,从而减少参数数量并增强特征提取能力。其次,为了拓宽图像感受野并改善特征融合,将感受野模块(RFB)模型引入颈部网络,替换原来的空间金字塔池化快速(SPPF)模块。此外,在颈部网络末尾附加了一个晶格结构核(LSKBlock)注意力机制,以进一步获得更丰富的语义信息。最后,为了灵活提高不同尺寸边界框的精度并增强模型的鲁棒性,使用一种[公式:见原文]损失函数替换原来的完全交并比(CIOU)损失函数。实验结果表明,改进后的YOLOv5模型的平均精度均值(mAP)为95.60%,参数数量为1836万,计算量为30.10G。精确率(P)和召回率(R)分别为88.10%和95.20%,为在移动设备上进行实时检测的部署提供了有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4e7/11696878/176aa0203a25/41598_2024_84623_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验