Ye Ning, Feng Kaihao, Lin Sen
School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, 110159, China.
School of Electronic and Information Engineering, Liaoning Technical University, Huludao, 125105, China.
Sci Rep. 2025 Jan 2;15(1):480. doi: 10.1038/s41598-024-84248-9.
Point cloud analysis is integral to numerous applications, including mapping and autonomous driving. However, the unstructured and disordered nature of point clouds presents significant challenges for feature extraction. While both local and non-local features are essential for effective 3D point cloud analysis, existing methods often fail to seamlessly integrate these complementary features. To address this limitation, we propose the Local-Non-Local Complementary Learning Network (LNLCL-Net), a novel framework that enhances feature extraction and representation. Leveraging partial convolution, LNLCL-Net divides the feature map into distinct local and non-local components. Local features are modeled through relative positional relationships, while non-local features capture absolute positional information. A Complementary Interactive Attention module is introduced to enable adaptive integration of these features, enriching their complementary relationship. Extensive experiments on benchmark datasets, including ModelNet40, ScanObjectNN, and ShapeNet Part, demonstrate the superiority of our approach in both quantitative and qualitative metrics, achieving state-of-the-art performance in classification and segmentation tasks.
点云分析对于包括测绘和自动驾驶在内的众多应用而言至关重要。然而,点云的非结构化和无序特性给特征提取带来了重大挑战。虽然局部特征和非局部特征对于有效的三维点云分析都至关重要,但现有方法往往无法无缝集成这些互补特征。为解决这一局限性,我们提出了局部-非局部互补学习网络(LNLCL-Net),这是一个增强特征提取和表示的新颖框架。利用局部卷积,LNLCL-Net将特征图划分为不同的局部和非局部组件。局部特征通过相对位置关系建模,而非局部特征捕获绝对位置信息。引入了一个互补交互注意力模块,以实现这些特征的自适应集成,丰富它们的互补关系。在包括ModelNet40、ScanObjectNN和ShapeNet Part在内的基准数据集上进行的大量实验表明,我们的方法在定量和定性指标方面均具有优势,在分类和分割任务中实现了领先的性能。