Suppr超能文献

RotInv-PCT:基于特征分离与聚合的旋转不变点云变换器

RotInv-PCT: Rotation-Invariant Point Cloud Transformer via feature separation and aggregation.

作者信息

He Cheng, Zhao Zhenjie, Zhang Xuebo, Yu Hang, Wang Runhua

机构信息

Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.

Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, China; Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.

出版信息

Neural Netw. 2025 May;185:107223. doi: 10.1016/j.neunet.2025.107223. Epub 2025 Feb 4.

Abstract

The widespread use of point clouds has spurred the rapid development of neural networks for point cloud processing. A crucial property of these networks is maintaining consistent output results under random rotations of the input point cloud, namely, rotation invariance. The dominant approach achieves rotation invariance is to construct local coordinate systems for computing invariant local point cloud coordinates. However, this method neglects the relative pose relationships between local point cloud structures, leading to a decline in network performance. To address this limitation, we propose a novel Rotation-Invariant Point Cloud Transformer (RotInv-PCT). This method extracts the local abstract shape features of the point cloud using Local Reference Frames (LRFs) and explicitly computes the spatial relative pose features between local point clouds, both of which are proven to be rotation-invariant. Furthermore, to capture the long-range pose dependencies between points, we introduce an innovative Feature Aggregation Transformer (FAT) model, which seamlessly fuses the pose features with the shape features to obtain a globally rotation-invariant representation. Moreover, to manage large-scale point clouds, we utilize hierarchical random downsampling to gradually decrease the scale of point clouds, followed by feature aggregation through FAT. To demonstrate the effectiveness of RotInv-PCT, we conducted comparative experiments across various tasks and datasets, including point cloud classification on ScanObjectNN and ModelNet40, part segmentation on ShapeNet, and semantic segmentation on S3DIS and KITTI. Thanks to our provable rotation-invariant features and FAT, our method generally outperforms state-of-the-art networks. In particular, we highlight that RotInv-PCT achieved a 2% improvement in real-world point cloud classification tasks compared to the strongest baseline. Furthermore, in the semantic segmentation task, we improved the performance on the S3DIS dataset by 10% and, for the first time, realized rotation-invariant point cloud semantic segmentation on the KITTI dataset.

摘要

点云的广泛使用推动了用于点云处理的神经网络的快速发展。这些网络的一个关键特性是在输入点云随机旋转下保持一致的输出结果,即旋转不变性。实现旋转不变性的主流方法是构建局部坐标系来计算不变的局部点云坐标。然而,这种方法忽略了局部点云结构之间的相对位姿关系,导致网络性能下降。为了解决这一局限性,我们提出了一种新颖的旋转不变点云变换器(RotInv-PCT)。该方法使用局部参考系(LRF)提取点云的局部抽象形状特征,并明确计算局部点云之间的空间相对位姿特征,这两者都被证明是旋转不变的。此外,为了捕捉点之间的长距离位姿依赖关系,我们引入了一种创新的特征聚合变换器(FAT)模型,该模型将位姿特征与形状特征无缝融合,以获得全局旋转不变表示。此外,为了处理大规模点云,我们利用分层随机下采样逐渐减小点云的规模,然后通过FAT进行特征聚合。为了证明RotInv-PCT的有效性,我们在各种任务和数据集上进行了对比实验,包括在ScanObjectNN和ModelNet40上的点云分类、在ShapeNet上的部分分割以及在S3DIS和KITTI上的语义分割。得益于我们可证明的旋转不变特征和FAT,我们的方法总体上优于现有网络。特别是,我们强调RotInv-PCT在真实世界点云分类任务中比最强基线提高了2%。此外,在语义分割任务中,我们将S3DIS数据集上的性能提高了10%,并首次在KITTI数据集上实现了旋转不变点云语义分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验