Suppr超能文献

一种基于不平衡样本条件下表示学习的集成多任务智能轴承故障诊断方案。

An Integrated Multitasking Intelligent Bearing Fault Diagnosis Scheme Based on Representation Learning Under Imbalanced Sample Condition.

作者信息

Zhang Jiusi, Zhang Ke, An Yiyao, Luo Hao, Yin Shen

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6231-6242. doi: 10.1109/TNNLS.2022.3232147. Epub 2024 May 2.

Abstract

Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme.

摘要

准确的轴承故障诊断对于旋转机械系统的安全性和可靠性具有重要意义。在实际应用中,旋转机械系统中故障数据与健康数据之间的样本比例不均衡。此外,轴承故障检测、分类和识别任务之间存在共性。基于这些观察结果,本文提出了一种在样本不均衡条件下借助表征学习的新型集成多任务智能轴承故障诊断方案,该方案实现了轴承故障检测、分类和未知故障识别。具体而言,在无监督条件下,集成方案中提出了一种基于改进的带有瓶颈层自注意力机制的去噪自编码器(DAE)的轴承故障检测方法(MDAE-SAMB),该方法仅使用健康数据进行训练。将自注意力机制引入瓶颈层的神经元中,能够为瓶颈层的神经元分配不同权重。此外,还提出了基于表征学习的迁移学习用于少样本故障分类。仅使用少量故障样本进行离线训练,即可实现高精度的在线轴承故障分类。最后,根据已知故障数据,能够有效识别未知的轴承故障。由转子动力学实验台(RDER)生成的轴承数据集和一个公共轴承数据集证明了所提出的集成故障诊断方案的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验