Alavizadeh Seyyed Amir Reza, Shahbaz Mehrdad, Kavanlouei Majid, Kim Sang Sub
Department of Materials Science and Engineering, Faculty of Engineering, Urmia University, Urmia, 5756151818, Iran.
Department of Materials Science and Engineering, Inha University, Incheon, 22212, Korea.
Sci Rep. 2025 Jan 2;15(1):444. doi: 10.1038/s41598-024-84913-z.
This study investigates the optimization of mechanical milling parameters to enhance the recycling of Ti6Al4V machining chips, addressing a significant challenge in sustainable materials processing. The influence of ball-to-powder ratio (BPR) and ball size distribution on powder characteristics, including crystallite size, particle size, and phase composition, was systematically examined. Key findings include a 30% reduction in crystallite size, with the smallest crystallite size of 51.6 nm achieved at a BPR of 10:1, as determined by Rietveld refinement. Dynamic light scattering (DLS) measurements revealed the smallest average particle size of 220.09 nm for a 20:1 BPR with a 25:75 wt% ball size ratio. Energy-dispersive X-ray analysis (EDAX) confirmed the highest Ti content (76.62 wt%) in the 10:1 BPR sample, highlighting the correlation between milling parameters and chemical purity. Electron microscopy showed that ball size distribution significantly influenced particle morphology, with a higher fraction of smaller balls producing a more uniform particle distribution and spherical morphology. Additionally, annealing-induced phase transformations were analyzed, revealing the conversion of TiO into TiO₂ under specific conditions. This study demonstrates that optimized milling parameters can reduce crystallite size and improve particle morphology while achieving high chemical purity, laying the groundwork for practical applications in materials recycling and advanced manufacturing. The findings also show the potential for producing single-phase TiO₂ powders for use in paint and cosmetic products through tailored heat treatment processes.
本研究探讨了机械研磨参数的优化,以提高Ti6Al4V加工切屑的回收利用率,解决可持续材料加工中的一项重大挑战。系统研究了球粉比(BPR)和球尺寸分布对粉末特性(包括微晶尺寸、颗粒尺寸和相组成)的影响。主要发现包括微晶尺寸减小30%,通过Rietveld精修确定,在球粉比为10:1时可实现最小微晶尺寸51.6nm。动态光散射(DLS)测量显示,对于球粉比为20:1且球尺寸比为25:75 wt%的情况,平均颗粒尺寸最小为220.09nm。能量色散X射线分析(EDAX)证实,球粉比为10:1的样品中Ti含量最高(76.62 wt%),突出了研磨参数与化学纯度之间的相关性。电子显微镜显示,球尺寸分布对颗粒形态有显著影响,较小球的比例越高,颗粒分布越均匀,形态越呈球形。此外,还分析了退火诱导的相变,发现在特定条件下TiO会转化为TiO₂。本研究表明,优化的研磨参数可以减小微晶尺寸、改善颗粒形态,同时实现高化学纯度,为材料回收和先进制造的实际应用奠定了基础。研究结果还表明,通过定制热处理工艺,有潜力生产用于油漆和化妆品的单相TiO₂粉末。