Suppr超能文献

X射线自由电子激光源揭示了剪切对电荷密度波中集体电荷传输的重要性。

The importance of shear on the collective charge transport in CDWs revealed by an XFEL source.

作者信息

Le Bolloc'h David, Bellec Ewen, Ghoneim Darine, Gallo-Frantz Antoine, Wzietek Pawel, Ortega Luc, Madsen Anders, Monceau Pierre, Chollet Mathieu, Gonzales-Vallejo Isabel, Jacques Vincent L R, Sinchenko Aleksandr

机构信息

Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.

ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France.

出版信息

Sci Adv. 2025 Jan 3;11(1):eadr6034. doi: 10.1126/sciadv.adr6034.

Abstract

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used. The CDW phase can be retrieved over the entire sample from diffracted intensities using a genetic algorithm. For currents below threshold, increasing shear deformation is observed in the central part of the sample while longitudinal deformation appears above threshold when shear relaxes. Shear thus precedes longitudinal deformation, with relaxation of one leading to the appearance of the other. Moreover, strain accumulates on surface steps in the sliding regime, demonstrating the strong pinning character of these surface discontinuities. The sliding process of nanometric CDW involves macroscopic sample dimensions.

摘要

材料中的电荷输运对基于半导体、电池或超导体技术的广泛器件产生影响。滑动电荷密度波(CDW)中的电荷输运与其他所有情况不同,因为原子晶格直接参与输运过程。为了全面了解与集体输运相关的结构变化,使用了由X射线自由电子激光(XFEL)源产生的大相干X射线束。利用遗传算法可以从衍射强度中获取整个样品上的CDW相位。对于低于阈值的电流,在样品中心部分观察到剪切变形增加,而当剪切松弛时,纵向变形出现在阈值以上。因此,剪切先于纵向变形,一种变形的松弛会导致另一种变形的出现。此外,应变在滑动状态下的表面台阶上积累,这表明这些表面不连续具有很强的钉扎特性。纳米级CDW的滑动过程涉及宏观样品尺寸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da4/11698093/b803f154ed44/sciadv.adr6034-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验