Suppr超能文献

神经网络对分子力场分子间相互作用项的修正,在液体热力学性质计算中捕捉核量子效应。

Neural Network Corrections to Intermolecular Interaction Terms of a Molecular Force Field Capture Nuclear Quantum Effects in Calculations of Liquid Thermodynamic Properties.

作者信息

Kurnikov Igor V, Pereyaslavets Leonid, Kamath Ganesh, Sakipov Serzhan N, Voronina Ekaterina, Butin Oleg, Illarionov Alexey, Leontyev Igor, Nawrocki Grzegorz, Darkhovskiy Mikhail, Olevanov Michael, Ivahnenko Ilya, Chen YuChun, Lock Christopher B, Levitt Michael, Kornberg Roger D, Fain Boris

机构信息

InterX Inc., (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States.

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94304, United States.

出版信息

J Chem Theory Comput. 2024 Feb 13;20(3):1347-1357. doi: 10.1021/acs.jctc.3c00921. Epub 2024 Jan 19.

Abstract

We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy. Accounting for NQE through molecular force field corrections circumvents the need for explicit computationally expensive PIMD simulations in accurate calculations of the properties of chemical and biological systems. The accuracy and locality of pairwise NN NQE corrections indicate that this approach could be applicable to complex heterogeneous systems, such as proteins.

摘要

我们通过对从头算拟合分子力场ARROW引入短程神经网络(NN)校正,将核量子效应(NQE)纳入凝聚态模拟中。力场NN校正拟合至分子二聚体的平均相互作用能和力,这些二聚体使用具有受限质心位置的路径积分分子动力学(PIMD)技术进行模拟。经NN校正的力场能够再现计算得到的液态水和甲烷性质的NQE,如密度、径向分布函数(RDF)、蒸发焓(HVAP)和溶剂化自由能。通过分子力场校正来考虑NQE,避免了在化学和生物系统性质的精确计算中进行明确的计算成本高昂的PIMD模拟。成对NN NQE校正的准确性和局部性表明,这种方法可能适用于复杂的异质系统,如蛋白质。

相似文献

引用本文的文献

1
On the emergence of machine-learning methods in bottom-up coarse-graining.论自下而上粗粒化中机器学习方法的出现。
Curr Opin Struct Biol. 2025 Feb;90:102972. doi: 10.1016/j.sbi.2024.102972. Epub 2025 Jan 2.

本文引用的文献

3
Exploring chemical compound space with quantum-based machine learning.利用基于量子的机器学习探索化合物空间。
Nat Rev Chem. 2020 Jul;4(7):347-358. doi: 10.1038/s41570-020-0189-9. Epub 2020 Jun 12.
7
Bottom-up Coarse-Graining: Principles and Perspectives.自底向上粗粒化:原理与展望。
J Chem Theory Comput. 2022 Oct 11;18(10):5759-5791. doi: 10.1021/acs.jctc.2c00643. Epub 2022 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验