Suppr超能文献

数据与人工智能驱动的合成结合蛋白发现。

Data and AI-driven synthetic binding protein discovery.

作者信息

Li Yanlin, Duan Zixin, Li Zhenwen, Xue Weiwei

机构信息

School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, Chongqing 401329, China.

出版信息

Trends Pharmacol Sci. 2025 Feb;46(2):132-144. doi: 10.1016/j.tips.2024.12.002. Epub 2025 Jan 3.

Abstract

Synthetic binding proteins (SBPs) are a class of protein binders that are artificially created and do not exist naturally. Their broad applications in tackling challenges of research, diagnostics, and therapeutics have garnered significant interest. Traditional protein engineering is pivotal to the discovery of SBPs. Recently, this discovery has been significantly accelerated by computational approaches, such as molecular modeling and artificial intelligence (AI). Furthermore, while numerous bioinformatics databases offer a wealth of resources that fuel SBP discovery, the full potential of these data has not yet been fully exploited. In this review, we present a comprehensive overview of SBP data ecosystem and methodologies in SBP discovery, highlighting the critical role of high-quality data and AI technologies in accelerating the discovery of innovative SBPs with promising applications in pharmacological sciences.

摘要

合成结合蛋白(SBP)是一类人工创建且天然不存在的蛋白结合物。它们在应对研究、诊断和治疗挑战方面的广泛应用引起了极大关注。传统蛋白质工程对于SBP的发现至关重要。最近,诸如分子建模和人工智能(AI)等计算方法显著加速了这一发现。此外,尽管众多生物信息学数据库提供了丰富的资源来推动SBP发现,但这些数据的全部潜力尚未得到充分利用。在本综述中,我们全面概述了SBP数据生态系统以及SBP发现中的方法,强调了高质量数据和AI技术在加速发现具有药理学科学应用前景的创新SBP方面的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验