Lai Qingsi, Xu Fanjie, Yao Lin, Gao Zhifeng, Liu Siyuan, Wang Hongshuai, Lu Shuqi, He Di, Wang Liwei, Zhang Linfeng, Wang Cheng, Ke Guolin
DP Technology, Beijing, 100080, China.
Center for Data Science, Peking University, Beijing, 100871, China.
Adv Sci (Weinh). 2025 Feb;12(8):e2410722. doi: 10.1002/advs.202410722. Epub 2025 Jan 4.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed. This study introduces XtalNet, the first equivariant deep generative model for end-to-end crystal structure prediction from PXRD. Unlike previous crystal structure prediction methods that rely solely on composition, XtalNet leverages PXRD as an additional condition, eliminating ambiguity and enabling the generation of complex organic structures with up to 400 atoms in the unit cell. XtalNet comprises two modules: a Contrastive PXRD-Crystal Pretraining (CPCP) module that aligns PXRD space with crystal structure space, and a Conditional Crystal Structure Generation (CCSG) module that generates candidate crystal structures conditioned on PXRD patterns. Evaluation on two MOF datasets (hMOF-100 and hMOF-400) demonstrates XtalNet's effectiveness. XtalNet achieves a top-10 Match Rate of 90.2% and 79% for hMOF-100 and hMOF-400 in conditional crystal structure prediction task, respectively. XtalNet enables the direct prediction of crystal structures from experimental measurements, eliminating the need for manual intervention and external databases. This opens up new possibilities for automated crystal structure determination and the accelerated discovery of novel materials.
粉末X射线衍射(PXRD)是材料表征中一种普遍使用的技术。虽然对PXRD的分析通常需要大量人工干预,且大多数自动化方法仅在粗粒度水平上实现。但从PXRD进行细粒度晶体结构预测这一更困难且重要的任务仍未得到解决。本研究引入了XtalNet,这是首个用于从PXRD进行端到端晶体结构预测的等变深度生成模型。与以往仅依赖成分的晶体结构预测方法不同,XtalNet将PXRD作为附加条件,消除了模糊性,并能够生成单胞中原子数多达400个的复杂有机结构。XtalNet由两个模块组成:一个对比PXRD - 晶体预训练(CPCP)模块,用于使PXRD空间与晶体结构空间对齐;以及一个条件晶体结构生成(CCSG)模块,用于根据PXRD模式生成候选晶体结构。在两个金属有机框架数据集(hMOF - 100和hMOF - 400)上的评估证明了XtalNet的有效性。在条件晶体结构预测任务中,XtalNet对hMOF - 100和hMOF - 400的前10匹配率分别达到了90.2%和79%。XtalNet能够从实验测量直接预测晶体结构,无需人工干预和外部数据库。这为自动化晶体结构测定以及加速新型材料的发现开辟了新的可能性。