Cheng Guanjian, Gong Xin-Gao, Yin Wan-Jian
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China.
Shanghai Qi Zhi Institute, Shanghai, 200030, China.
Nat Commun. 2022 Mar 21;13(1):1492. doi: 10.1038/s41467-022-29241-4.
Crystal structure prediction is a long-standing challenge in condensed matter and chemical science. Here we report a machine-learning approach for crystal structure prediction, in which a graph network (GN) is employed to establish a correlation model between the crystal structure and formation enthalpies at the given database, and an optimization algorithm (OA) is used to accelerate the search for crystal structure with lowest formation enthalpy. The framework of the utilized approach (a database + a GN model + an optimization algorithm) is flexible. We implemented two benchmark databases, i.e., the open quantum materials database (OQMD) and Matbench (MatB), and three OAs, i.e., random searching (RAS), particle-swarm optimization (PSO) and Bayesian optimization (BO), that can predict crystal structures at a given number of atoms in a periodic cell. The comparative studies show that the GN model trained on MatB combined with BO, i.e., GN(MatB)-BO, exhibit the best performance for predicting crystal structures of 29 typical compounds with a computational cost three orders of magnitude less than that required for conventional approaches screening structures through density functional theory calculation. The flexible framework in combination with a materials database, a graph network, and an optimization algorithm may open new avenues for data-driven crystal structural predictions.
晶体结构预测是凝聚态物质和化学科学中长期存在的一项挑战。在此,我们报告一种用于晶体结构预测的机器学习方法,其中采用图网络(GN)在给定数据库中建立晶体结构与生成焓之间的相关模型,并使用一种优化算法(OA)来加速寻找具有最低生成焓的晶体结构。所采用方法的框架(一个数据库 + 一个GN模型 + 一种优化算法)具有灵活性。我们实现了两个基准数据库,即开放量子材料数据库(OQMD)和材料基准测试库(Matbench,MatB),以及三种优化算法,即随机搜索(RAS)、粒子群优化(PSO)和贝叶斯优化(BO),它们能够预测周期性晶胞中给定原子数的晶体结构。比较研究表明,在MatB上训练并与BO相结合的GN模型,即GN(MatB)-BO,在预测29种典型化合物的晶体结构方面表现最佳,其计算成本比通过密度泛函理论计算筛选结构的传统方法所需成本低三个数量级。这种结合材料数据库、图网络和优化算法的灵活框架可能为数据驱动的晶体结构预测开辟新途径。