Suppr超能文献

应用于粉末X射线衍射的机器学习新基准。

A new benchmark for machine learning applied to powder X-ray diffraction.

作者信息

Rincón Sergio, González Gabriel, Macías Mario A, Arbeláez Pablo

机构信息

Crystallography and Chemistry of Materials, CrisQuimMat, Department of Chemistry, Universidad de los Andes, Bogotá, 111711, Colombia.

Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, 111711, Colombia.

出版信息

Sci Data. 2025 Jul 10;12(1):1186. doi: 10.1038/s41597-025-05534-3.

Abstract

Although crystal parameter prediction from powder X-ray diffraction has recently attracted the interest of the machine learning community, most existing datasets for this task are private and lack structural diversity. Here, we introduce the Simulated Powder X-ray Diffraction Open Database (SIMPOD), a new dataset that is public and structurally varied. This new benchmark includes 467,861 crystal structures from the Crystallography Open Database (COD) and their powder X-ray diffraction patterns. SIMPOD presents simulated one-dimensional powder X-ray diffractograms and derived two-dimensional radial images to facilitate the adoption of computer vision models for this task. We hope SIMPOD contributes to developing models that improve materials analysis from powder X-ray diffraction.

摘要

尽管从粉末X射线衍射预测晶体参数最近引起了机器学习社区的关注,但用于此任务的大多数现有数据集都是私有的,并且缺乏结构多样性。在这里,我们引入了模拟粉末X射线衍射开放数据库(SIMPOD),这是一个公开且结构多样的新数据集。这个新的基准数据集包括来自晶体学开放数据库(COD)的467,861个晶体结构及其粉末X射线衍射图谱。SIMPOD提供了模拟的一维粉末X射线衍射图和派生的二维径向图像,以促进计算机视觉模型在此任务中的应用。我们希望SIMPOD有助于开发能够改进粉末X射线衍射材料分析的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3346/12246473/bdd0bb126e32/41597_2025_5534_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验