Mujawar Shahabaj S, Arbade Gajanan K, Rukwal Sonali, Tripathi Vidisha, Mane Mahadeo, Sharma Rakesh K, Kashte Shivaji B
Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, India.
Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.
Int J Pharm. 2025 Feb 10;670:125164. doi: 10.1016/j.ijpharm.2024.125164. Epub 2025 Jan 3.
Managing wounds and accompanying consequences like exudation and microbiological infections is challenging in clinical practice. Bioactive compounds from traditional medicinal plants help heal wounds, although their bioavailability is low. This study uses sodium alginate (SA), gelatin (G), and Santalum album oil (SAL) to 3D print a polymeric hydrogel scaffold to circumvent these difficulties. The 3D printed scaffolds showed hydrophilicity, an average pore size of 221.30 ± 19.83 µm, adequate swelling, higher mechanical strength with tensile strength (σ) of 13.5 ± 1.08 MPa, a Young's modulus of 17.53 ± 1.61 MPa, andpotential antibacterial activity against skin infection causing bacteria viz. Staphylococcus aureus (87.7 ± 4 % growth inhibition) and Pseudomonas aeruginosa (i.e. 81.96 ± 3.94 % growth inhibition). The scaffolds showed hemocompatibility, biocompatibility, and moderate biodegradability. Cytotoxicity and scratch assay showed significantly improved fibroblast viability, proliferation, and migration. In the in vivo study, the scaffolds were applied to full-thickness wounds in rat models. After 7 and 14 days of treatment, the wounds treated with the 3D-printed SA-G-SAL scaffold showed higher closure rates, lower contraction, higher-regenerated epithelium with minimal inflammation, and less scar formation compared to control groups. Thus, the 3D-printed SA-G-SAL scaffold is a promising biomaterial for wound healing with reduced scar formation.
在临床实践中,处理伤口及其伴随的渗出和微生物感染等后果具有挑战性。传统药用植物中的生物活性化合物有助于伤口愈合,尽管其生物利用度较低。本研究使用海藻酸钠(SA)、明胶(G)和檀香木油(SAL)通过3D打印制备一种聚合物水凝胶支架,以克服这些困难。3D打印的支架表现出亲水性,平均孔径为221.30±19.83μm,具有足够的溶胀性,机械强度较高,拉伸强度(σ)为13.5±1.08MPa,杨氏模量为17.53±1.61MPa,并且对引起皮肤感染的细菌具有潜在的抗菌活性,即金黄色葡萄球菌(生长抑制率为87.7±4%)和铜绿假单胞菌(生长抑制率为81.96±3.94%)。该支架表现出血液相容性、生物相容性和适度的生物降解性。细胞毒性和划痕试验显示成纤维细胞的活力、增殖和迁移能力显著提高。在体内研究中,将该支架应用于大鼠模型的全层伤口。治疗7天和14天后,与对照组相比,用3D打印的SA-G-SAL支架治疗的伤口显示出更高的愈合率、更低的收缩率以及更高的再生上皮且炎症最小,瘢痕形成更少。因此,3D打印的SA-G-SAL支架是一种有前景的生物材料,可用于伤口愈合并减少瘢痕形成。