Chen Ruiwen, Muensterman Derek, Field Jennifer, Ng Carla
Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
Environ Sci Technol. 2025 Jan 14;59(1):82-91. doi: 10.1021/acs.est.4c06734. Epub 2025 Jan 5.
The phospholipid membrane-water partition coefficients () and equilibrium binding affinities for human serum albumin (HSA) of 60 structurally diverse perfluoroalkyl and polyfluoroalkyl substances (PFAS) were evaluated through laboratory measurements and modeling to enhance our understanding of PFAS distribution in organisms. Per- and polyfluoroalkyl carboxylic acids exhibited a 0.36 ± 0.01 log-unit increase in as the fluorinated carbon chain length increased from C to C, while per- and polyfluoroalkyl sulfonates showed a 0.37 ± 0.02 log-unit increase. The highest HSA affinity range was observed between C and C, with the following structural subclass order: per- and polyfluoroalkyl sulfonates ≈ ether sulfonic acids > polyfluoroalkyl carboxylic acids > fluorotelomer unsaturated carboxylic acids > phosphate diesters ≈ per- and polyfluoroether carboxylic acids. A comparison between association rate constants (K) and HSA-PFAS molecular docking predictions with AutoDock Vina indicated that modeling could effectively predict the affinity of PFAS to HSA, especially for PFAS carbon chain lengths from C to C. Based on in vitro results, exposure-dependent PFAS partitioning in organisms was modeled by comparing distribution coefficients between PFAS in phospholipid membranes and HSA at different PFAS concentrations and demonstrated that at lower concentrations, PFAS had higher partitioning in HSA, while with increasing concentration, the proportion of binding relative to the aqueous phase shifted toward the phospholipid membrane. Few studies have compared the bioaccumulation of PFAS in phospholipid membranes and HSA. This research reports that protein-water distribution coefficients are higher than membrane-water partitioning coefficients at lower PFAS concentrations, which may have implications for interpreting exposure data and toxicity experiments.
通过实验室测量和建模评估了60种结构各异的全氟烷基和多氟烷基物质(PFAS)的磷脂膜-水分配系数()以及与人血清白蛋白(HSA)的平衡结合亲和力,以加深我们对PFAS在生物体内分布的理解。随着氟化碳链长度从C增加到C,全氟烷基羧酸的呈现出0.36±0.01对数单位的增加,而全氟烷基磺酸盐则呈现出0.37±0.02对数单位的增加。在C和C之间观察到最高的HSA亲和力范围,具有以下结构亚类顺序:全氟烷基磺酸盐≈醚磺酸>多氟烷基羧酸>氟调聚物不饱和羧酸>磷酸二酯≈全氟醚羧酸。缔合速率常数(K)与使用AutoDock Vina进行的HSA-PFAS分子对接预测之间的比较表明,建模可以有效地预测PFAS对HSA的亲和力,特别是对于碳链长度从C到C的PFAS。基于体外结果,通过比较不同PFAS浓度下PFAS在磷脂膜和HSA之间的分配系数,对生物体内PFAS的暴露依赖性分配进行了建模,结果表明,在较低浓度下,PFAS在HSA中的分配更高,而随着浓度的增加,相对于水相的结合比例向磷脂膜转移。很少有研究比较PFAS在磷脂膜和HSA中的生物累积情况。本研究报告称,在较低PFAS浓度下,蛋白质-水分配系数高于膜-水分配系数,这可能对解释暴露数据和毒性实验有影响。