文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Enhancement of Osseointegration via Endogenous Electric Field by Regulating the Charge Microenvironments around Implants.

作者信息

Xu Fangfang, Zhao Guangbin, Gong Yuxin, Liang Xiang, Yu Ming, Cui Hao, Xie Linyang, Zhu Nan, Zhu Xuan, Shao Xiaoxi, Qi Kun, Lu Bingheng, Tu Junbo, Na Sijia

机构信息

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi' an Jiaotong University, Xi' an, 710004, China.

Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi' an, 710004, China.

出版信息

Adv Healthc Mater. 2025 Mar;14(6):e2403388. doi: 10.1002/adhm.202403388. Epub 2025 Jan 5.


DOI:10.1002/adhm.202403388
PMID:39757756
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11874649/
Abstract

The regulation of the charged microenvironment around implants is an effective way to promote osseointegration. Although homeostasis of the charged microenvironment plays an integral role in tissues, current research is externally invasive and unsuitable for clinical applications. In this study, functional materials with different surface potential differences are prepared by changing the spatial layout of Ta and Ag on the surface of a Ti-6Al-4V alloy (TC4). This naturally formed an endogenous electric field (EEF) with a negatively charged cell membrane after in vivo implantation and promoted osseointegration at the interface between the bone and implant through the upregulation of Ca concentration and activation of subsequent pathways. Interestingly, the promotion of stem cell differentiation, regulation of the direction of immune cell polarization, and antibacterial efficacy are determined by the free charge contained in the implant, rather than by the magnitude of the surface potential difference. This functional implant represents a unique strategy for regulating the charged microenvironment around the implant and enhancing osseointegration, thereby providing ideas and technical approaches for the clinical development of novel implant materials.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/a6a31f0355b0/ADHM-14-0-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/b82860fa4ba5/ADHM-14-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/1e1c0d96a132/ADHM-14-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/c9df3c599a04/ADHM-14-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/78408a6b0af8/ADHM-14-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/f90f4e09bc71/ADHM-14-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/b292820d2b05/ADHM-14-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/68205543205b/ADHM-14-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/a6a31f0355b0/ADHM-14-0-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/b82860fa4ba5/ADHM-14-0-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/1e1c0d96a132/ADHM-14-0-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/c9df3c599a04/ADHM-14-0-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/78408a6b0af8/ADHM-14-0-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/f90f4e09bc71/ADHM-14-0-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/b292820d2b05/ADHM-14-0-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/68205543205b/ADHM-14-0-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b5d/11874649/a6a31f0355b0/ADHM-14-0-g009.jpg

相似文献

[1]
Enhancement of Osseointegration via Endogenous Electric Field by Regulating the Charge Microenvironments around Implants.

Adv Healthc Mater. 2025-3

[2]
The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.

Int J Oral Maxillofac Implants. 2009

[3]
Electrically polarized TiO nanotubes on Ti implants to enhance early-stage osseointegration.

Acta Biomater. 2019-7-19

[4]
Eu-Doped TiO Coatings One-Step Preparation Enhance Macrophage Polarization and Osseointegration of Implants.

ACS Appl Mater Interfaces. 2025-2-12

[5]
An alternative ex vivo method to evaluate the osseointegration of Ti-6Al-4V alloy also combined with collagen.

Biomed Mater. 2021-2-18

[6]
Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study.

Mater Sci Eng C Mater Biol Appl. 2021-1

[7]
Enhanced Osseointegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes.

Int J Nanomedicine. 2020-11-3

[8]
The role of autophagy in the process of osseointegration around titanium implants with micro-nano topography promoted by osteoimmunity.

Sci Rep. 2021-9-16

[9]
Enhanced Osseointegration of Titanium Alloy Implants with Laser Microgrooved Surfaces and Graphene Oxide Coating.

ACS Appl Mater Interfaces. 2019-10-17

[10]
Ta-Ag Coatings on TC4: A Strategy to Leverage Bioelectric Microenvironments for Enhanced Antibacterial Activity.

Biotechnol J. 2025-4

引用本文的文献

[1]
Battery-inspired electrochemically charged polyimide coating for ion-electric synergistic rapid bacteria-killing.

Mater Today Bio. 2025-5-12

本文引用的文献

[1]
Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor.

Nat Biomed Eng. 2024-10

[2]
Strategies for the development of metalloimmunotherapies.

Nat Biomed Eng. 2024-9

[3]
Electric-field-assisted proton coupling enhanced oxygen evolution reaction.

Nat Commun. 2024-4-18

[4]
Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing.

Bioact Mater. 2024-2-28

[5]
Cell Therapy for Parkinson's Disease.

Pharmaceutics. 2023-11-22

[6]
Metallic Materials for Bone Repair.

Adv Healthc Mater. 2024-1

[7]
Deciphering calcium signals in cells and tissues with tailored probes and models.

J Physiol. 2023-10

[8]
New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN.

Physiol Rev. 2024-1-1

[9]
Chromatin reprogramming and bone regeneration in vitro and in vivo via the microtopography-induced constriction of cell nuclei.

Nat Biomed Eng. 2023-11

[10]
Investigating the behavior of ultratrace levels of nanoparticulate and ionic silver in a seawater mesocosm using single particle inductively coupled plasma - mass spectrometry.

Chemosphere. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索