Pan Xuelei, Yan Mengyu, Liu Qian, Zhou Xunbiao, Liao Xiaobin, Sun Congli, Zhu Jiexin, McAleese Callum, Couture Pierre, Sharpe Matthew K, Smith Richard, Peng Nianhua, England Jonathan, Tsang Shik Chi Edman, Zhao Yunlong, Mai Liqiang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China.
Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
Nat Commun. 2024 Apr 18;15(1):3354. doi: 10.1038/s41467-024-47568-y.
The discovery of Mn-Ca complex in photosystem II stimulates research of manganese-based catalysts for oxygen evolution reaction (OER). However, conventional chemical strategies face challenges in regulating the four electron-proton processes of OER. Herein, we investigate alpha-manganese dioxide (α-MnO) with typical Mn-O-Mn-HO motifs as a model for adjusting proton coupling. We reveal that pre-equilibrium proton-coupled redox transition provides an adjustable energy profile for OER, paving the way for in-situ enhancing proton coupling through a new "reagent"- external electric field. Based on the α-MnO single-nanowire device, gate voltage induces a 4-fold increase in OER current density at 1.7 V versus reversible hydrogen electrode. Moreover, the proof-of-principle external electric field-assisted flow cell for water splitting demonstrates a 34% increase in current density and a 44.7 mW/cm² increase in net output power. These findings indicate an in-depth understanding of the role of proton-incorporated redox transition and develop practical approach for high-efficiency electrocatalysis.
光系统II中锰 - 钙复合物的发现激发了对用于析氧反应(OER)的锰基催化剂的研究。然而,传统化学策略在调节OER的四电子 - 质子过程中面临挑战。在此,我们研究具有典型Mn - O - Mn - HO基序的α - 二氧化锰(α - MnO)作为调节质子耦合的模型。我们发现预平衡质子耦合氧化还原转变为OER提供了可调节的能量分布,为通过新的“试剂”——外部电场原位增强质子耦合铺平了道路。基于α - MnO单纳米线器件,相对于可逆氢电极,栅极电压在1.7 V时使OER电流密度增加了4倍。此外,用于水分解的原理验证外部电场辅助流动池显示电流密度增加了34%,净输出功率增加了44.7 mW/cm²。这些发现表明对质子掺入氧化还原转变的作用有了深入理解,并为高效电催化开发了实用方法。