The Weintraub Centre for Reconstructive Biotechnology, Divisions of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California 90095-1668, USA.
Int J Oral Maxillofac Implants. 2009 Sep-Oct;24(5):808-16.
This study evaluated the biologic effect in vivo of hydroxyapatite (HA) nanoparticle surface modification on commercially pure titanium or titanium alloy (Ti-6Al-4V) implants.
Miniature cylindric titanium and Ti-6Al-4V implants were pretreated with dual acid etching (DAE), and a subset was further modified with HA nanoparticles using discrete crystalline deposition (DCD). The resultant implant surface topography was characterized by interferometry and scanning electron microscopy. Miniature implants of DAE titanium, DAE Ti-6Al-4V, DCD titanium, and DCD Ti-6Al-4V were surgically placed in the femora of rats. After 4 days, 1 week, and 2 weeks of healing, osseointegration was evaluated by implant push-in tests or microcomputed tomography (microCT). Ti-6Al-4V samples were harvested at week 2 and prepared for nondecalcified histology and subjected to bone-to-implant contact (BIC) measurement.
DCD treatment generated a complex surface morphology via the bonded HA nanoparticles. However, the amplitude and spatial, hybrid, and functional surface roughness parameters measured at the micron and submicron levels did not depict topographic differences between the DAE and the DCD-modified implants. DAE titanium and DAE Ti-6Al-4V implants showed a sharp increase in push-in values at week 1, followed by a plateau at week 2. DCD titanium and DCD Ti-6Al-4V implants showed similar sharp increases at week 1, but the push-in values continued to increase at week 2. The surrounding bone architecture evaluated by microCT and the BIC ratio did not correlate with the biomechanical implant osseointegration measurement.
DCD-derived surface modification with HA nanoparticles on titanium and Ti-6Al-4V implants resulted in progressive osseointegration profiles that were distinctively different from those of DAE controls. Surrogate measurements such as surface roughness parameters and BIC did not predict the biologic effect of the DCD treatment. The data indicate that early osseointegration may be more sensitively regulated by nanoscale surface characteristics.
本研究评估了纳米羟基磷灰石(HA)表面修饰对商用纯钛或钛合金(Ti-6Al-4V)植入物的体内生物学效应。
采用双酸蚀(DAE)预处理微型圆柱状钛和 Ti-6Al-4V 植入物,并用离散结晶沉积(DCD)法对部分植入物进行 HA 纳米颗粒表面修饰。通过干涉测量法和扫描电子显微镜对所得植入物表面形貌进行了特征描述。将 DAE 钛、DAE Ti-6Al-4V、DCD 钛和 DCD Ti-6Al-4V 的微型植入物外科植入大鼠股骨。在愈合 4 天、1 周和 2 周后,通过植入物推入试验或微计算机断层扫描(microCT)评估骨整合。在第 2 周时取出 Ti-6Al-4V 样本,并准备进行非脱钙组织学处理,测量骨-植入物接触(BIC)。
DCD 处理通过结合的 HA 纳米颗粒产生了复杂的表面形貌。然而,在微米和亚微米级测量的振幅和空间、混合和功能表面粗糙度参数并未描绘出 DAE 和 DCD 修饰植入物之间的形貌差异。DAE 钛和 DAE Ti-6Al-4V 植入物在第 1 周时推入值急剧增加,随后在第 2 周时达到平台期。DCD 钛和 DCD Ti-6Al-4V 植入物在第 1 周时也表现出类似的急剧增加,但在第 2 周时推入值仍在增加。通过 microCT 和 BIC 比评估的周围骨结构与生物力学植入物骨整合测量无关。
在钛和 Ti-6Al-4V 植入物上用 HA 纳米颗粒进行 DCD 衍生的表面修饰导致渐进式骨整合模式,与 DAE 对照明显不同。表面粗糙度参数和 BIC 等替代测量方法并不能预测 DCD 处理的生物学效应。数据表明,早期骨整合可能更敏感地受纳米级表面特性的调节。