Suppr超能文献

初次孤立性后交叉韧带重建术后短期失败相关因素的评估:一项来自瑞典和挪威膝关节韧带登记处患者的研究。

Evaluation of Factors Associated With Short-term Failure After Primary Isolated PCL Reconstruction: A Study of Patients From the Swedish and Norwegian Knee Ligament Registries.

作者信息

Zsidai Bálint, Winkler Philipp W, Naarup Eric, Olsson Ebba, Horvath Alexandra, Moatshe Gilbert, Lind Martin, Musahl Volker, Hamrin Senorski Eric, Samuelsson Kristian

机构信息

Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Sahlgrenska Sports Medicine Center, Gothenburg, Sweden.

出版信息

Orthop J Sports Med. 2025 Jan 3;13(1):23259671241305191. doi: 10.1177/23259671241305191. eCollection 2025 Jan.

Abstract

BACKGROUND

The rate of subjective failure after isolated primary posterior cruciate ligament reconstruction (PCL-R) is relatively high, requiring an improved understanding of factors associated with inferior outcomes.

PURPOSE

To determine the association between patient and injury-related factors and total (surgical and clinical) failure at 2 years after PCL-R based on data from the Swedish National Knee Ligament Registry (SNKLR) and the Norwegian Knee Ligament Registry (NKLR).

STUDY DESIGN

Cohort study; Level of evidence, 3.

METHODS

Patients with primary isolated PCL-R registered between January 1, 2004 (NKLR), or January 1, 2005 (SNKLR), and December 31, 2020, were included. The primary study outcome was the risk of PCL-R failure at the 2-year follow-up, either surgical (≤2 years of index surgery) or clinical (Knee injury and Osteoarthritis Outcome Score [KOOS] Quality of Life subscale [QoL] <44) failure. Risk factors for failure were estimated utilizing univariable and multivariable logistic regression analyses.

RESULTS

Among the 189 included patients (36.0% from the SNKLR and 64.0% from the NKLR), the rate of 2-year surgical failure was 5.8%, while the rate of clinical failure was 45.0%. Multivariable analysis showed a negative association between the baseline KOOS QoL and the risk of PCL-R failure (OR, 0.74; 95% CI, 0.57-0.97; = .027). Univariable analysis indicated a positive association between traffic-related injury mechanism and PCL-R failure risk (OR, 3.11; 95% CI, 1.48-6.50; = .0026), with a further positive association shown in the adjusted (OR, 6.08; 95% CI, 2.00-18.50; = .0015) and multivariable (OR, 6.11; 95% CI, 2.01-18.55; = .0014) models. An area under the curve of 0.70 (95% CI, 0.60-0.80) was reported for the final multivariable model, implying at best poor to acceptable ability of the model to estimate PCL-R failure risk based on the variables considered.

CONCLUSION

Patients with isolated primary PCL-R had a high (45%) rate of short-term clinical failure, and traffic-related injury was associated with increased odds of failure. No modifiable risk factors were determined as potential predictors of failure. Clinicians treating patients with isolated PCL-R associated with a traffic-related injury mechanism should be aware of a >6-fold increased odds of revision surgery and inferior knee-related quality of life at short-term follow-up.

摘要

背景

单纯初次后交叉韧带重建术(PCL-R)后主观失败率相对较高,需要更好地了解与预后不良相关的因素。

目的

基于瑞典国家膝关节韧带注册中心(SNKLR)和挪威膝关节韧带注册中心(NKLR)的数据,确定患者及损伤相关因素与PCL-R术后2年时总体(手术及临床)失败之间的关联。

研究设计

队列研究;证据等级为3级。

方法

纳入2004年1月1日(NKLR)或2005年1月1日(SNKLR)至2020年12月31日期间登记的单纯初次PCL-R患者。主要研究结局为2年随访时PCL-R失败的风险,包括手术失败(距初次手术≤2年)或临床失败(膝关节损伤与骨关节炎疗效评分[KOOS]生活质量子量表[QoL]<44)。采用单变量和多变量逻辑回归分析评估失败的危险因素。

结果

在纳入的189例患者中(36.0%来自SNKLR,64.0%来自NKLR),2年手术失败率为5.8%,而临床失败率为45.0%。多变量分析显示,基线KOOS QoL与PCL-R失败风险呈负相关(比值比[OR],0.74;95%置信区间[CI],0.57-0.97;P = 0.027)。单变量分析表明,与交通相关的损伤机制与PCL-R失败风险呈正相关(OR,3.11;95%CI,1.48-6.50;P = 0.0026),在调整模型(OR,6.08;95%CI,2.00-18.50;P = 0.0015)和多变量模型(OR,6.11;95%CI,2.01-18.55;P = 0.0014)中进一步呈正相关。最终多变量模型的曲线下面积为0.70(95%CI,0.60-0.80),这意味着基于所考虑的变量,该模型预测PCL-R失败风险的能力充其量为差到尚可。

结论

单纯初次PCL-R患者短期临床失败率较高(45%),且与交通相关的损伤与失败几率增加有关。未确定可改变的危险因素作为失败的潜在预测因素。治疗与交通相关损伤机制相关的单纯PCL-R患者的临床医生应意识到,在短期随访中翻修手术几率增加6倍以上,且膝关节相关生活质量较差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验