Asadpour Leila, Mehrbakhsh Bandari Maryam Alsadat, Sojoudi Masouleh Roozbeh
Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
Heliyon. 2024 Dec 11;11(1):e41103. doi: 10.1016/j.heliyon.2024.e41103. eCollection 2025 Jan 15.
Antibiotic resistance in various microorganisms has become one of the most serious health problems worldwide. The use of nanoparticles in combination with conventional antibiotics is one of the recent efforts to overcome these challenges. This study aims to synthesize and evaluate the possibility of using amikacin-loaded selenium nanoparticles as antibacterial agent against multidrug-resistant , that causes bovine mastitis.
Selenium nanoparticles (SeNPs) were synthesized through chemical reduction of sodium selenite using L-cysteine. Loading of amikacin on selenium nanoparticles was done by mixing both in solution and confirmed by UV-Vis spectroscopy, XRD, SEM, and DLS. Antibacterial properties of obtained nanoparticles against were determined using agar disc diffusion, broth micro dilution methods and also time-kill assay. Anti-biofilm properties of amikacin-loaded selenium nanoparticles was determined using microplate method and through determining the expression level of biofilm associated genes including A and D in isolates treated with sub-MIC concentration of these nanoparticles by real-time PCR.
Synthetized SeNPs and amikacin-loaded selenium nanoparticles (SeNPs@AMK) exhibited spherical appearances and 80.4 % of Se° had a diameter of 120 nm. SeNPs and SeNPs@AMK exhibited antibacterial effects against isolates at the range of 32-128 μg/mL and 1-32 μg/mL respectively. Dependent on concentration and the exposure time, bacterial killing was promoted by the SeNPs@AMK treatment. The use of SeNPs@AMK decreased the biofilm formation of the isolates by more than 50 % and also lead to down-regulation of and biofilm associated gene compared to the control.
The results of this study suggest the antimicrobial properties of SeNPs and the reduction in the effective concentration of nanoparticle-loaded amikacin. Therefore, loading of antibiotics on the surface of nanoparticles may be used as a strategy to deal with the growing problem of drug resistance.
各种微生物中的抗生素耐药性已成为全球最严重的健康问题之一。将纳米颗粒与传统抗生素联合使用是应对这些挑战的最新努力之一。本研究旨在合成并评估使用载有阿米卡星的硒纳米颗粒作为抗引起牛乳腺炎的多重耐药菌的抗菌剂的可能性。
通过用L-半胱氨酸化学还原亚硒酸钠合成硒纳米颗粒(SeNPs)。通过在溶液中混合将阿米卡星负载到硒纳米颗粒上,并通过紫外可见光谱、X射线衍射、扫描电子显微镜和动态光散射进行确认。使用琼脂平板扩散法、肉汤微量稀释法以及时间杀菌试验测定所得纳米颗粒对[具体细菌名称未给出]的抗菌性能。使用微孔板法并通过实时聚合酶链反应测定用这些纳米颗粒的亚抑菌浓度处理的[具体细菌名称未给出]分离株中生物膜相关基因包括A和D的表达水平,来确定载有阿米卡星的硒纳米颗粒的抗生物膜性能。
合成的SeNPs和载有阿米卡星的硒纳米颗粒(SeNPs@AMK)呈现球形外观,80.4%的Se°直径为120nm。SeNPs和SeNPs@AMK分别在32 - 128μg/mL和1 - 32μg/mL范围内对[具体细菌名称未给出]分离株表现出抗菌作用。取决于浓度和暴露时间,SeNPs@AMK处理促进了细菌杀灭。与对照相比,使用SeNPs@AMK使分离株的生物膜形成减少了50%以上,并且还导致生物膜相关基因[具体基因名称未给出]和[具体基因名称未给出]的下调。
本研究结果表明SeNPs的抗菌性能以及载有纳米颗粒的阿米卡星有效浓度的降低。因此,将抗生素负载在纳米颗粒表面可作为应对日益严重的耐药性问题的一种策略。