Suppr超能文献

水肿和纤维交叉对离体神经模型中扩散 MRI 指标的影响:多张量模型与扩散方向分布函数的比较。

The impact of edema and fiber crossing on diffusion MRI metrics assessed in an ex vivo nerve phantom: Multi-tensor model vs. diffusion orientation distribution function.

机构信息

Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States.

Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama, United States.

出版信息

NMR Biomed. 2021 Jan;34(1):e4414. doi: 10.1002/nbm.4414. Epub 2020 Oct 4.

Abstract

Diffusion tensor imaging (DTI) has been employed for over 2 decades to noninvasively quantify central nervous system diseases/injuries. However, DTI is an inadequate simplification of diffusion modeling in the presence of coexisting inflammation, edema and crossing nerve fibers. We employed a tissue phantom using fixed mouse trigeminal nerves coated with various amounts of agarose gel to mimic crossing fibers in the presence of vasogenic edema. Diffusivity measures derived by DTI and diffusion basis spectrum imaging (DBSI) were compared at increasing levels of simulated edema and degrees of fiber crossing. Furthermore, we assessed the ability of DBSI, diffusion kurtosis imaging (DKI), generalized q-sampling imaging (GQI), q-ball imaging (QBI) and neurite orientation dispersion and density imaging to resolve fiber crossing, in reference to the gold standard angles measured from structural images. DTI-computed diffusivities and fractional anisotropy were significantly confounded by gel-mimicked edema and crossing fibers. Conversely, DBSI calculated accurate diffusivities of individual fibers regardless of the extent of simulated edema and degrees of fiber crossing angles. Additionally, DBSI accurately and consistently estimated crossing angles in various conditions of gel-mimicked edema when compared with the gold standard (r = 0.92, P = 1.9 × 10 , bias = 3.9°). Small crossing angles and edema significantly impact the diffusion orientation distribution function, making DKI, GQI and QBI less accurate in detecting and estimating fiber crossing angles. Lastly, we used diffusion tensor ellipsoids to demonstrate that DBSI resolves the confounds of edema and crossing fibers in the peritumoral edema region from a patient with lung cancer metastasis, while DTI failed. In summary, DBSI is able to separate two crossing fibers and accurately recover their diffusivities in a complex environment characterized by increasing crossing angles and amounts of gel-mimicked edema. DBSI also indicated better angular resolution compared with DKI, QBI and GQI.

摘要

弥散张量成像(DTI)已经被应用了二十多年,用于无创地量化中枢神经系统疾病/损伤。然而,在存在共存的炎症、水肿和交叉神经纤维的情况下,DTI 是对扩散建模的不充分简化。我们使用一种组织模型,使用固定的小鼠三叉神经,涂有不同量的琼脂糖凝胶,以模拟存在血管源性水肿时的交叉纤维。在模拟水肿程度和纤维交叉程度增加的情况下,比较了 DTI 和扩散基础谱成像(DBSI)得出的扩散测量值。此外,我们评估了 DBSI、扩散峰度成像(DKI)、广义 q 采样成像(GQI)、q 球成像(QBI)和神经丝取向弥散和密度成像分辨纤维交叉的能力,以参考结构图像测量的黄金标准角度。DTI 计算的扩散系数和各向异性分数明显受到凝胶模拟水肿和交叉纤维的影响。相反,DBSI 可以计算出单个纤维的准确扩散系数,无论模拟水肿的程度和纤维交叉角度如何。此外,与黄金标准相比,DBSI 在各种凝胶模拟水肿条件下准确一致地估计了交叉角度(r = 0.92,P = 1.9×10 -4 ,偏差 = 3.9°)。小的交叉角度和水肿显著影响扩散方向分布函数,使得 DKI、GQI 和 QBI 在检测和估计纤维交叉角度方面的准确性降低。最后,我们使用扩散张量椭球体来证明 DBSI 能够解决肺癌转移患者肿瘤周围水肿区域水肿和交叉纤维的混淆,而 DTI 则无法解决。总之,DBSI 能够在具有交叉角度和凝胶模拟水肿程度增加的复杂环境中分离出两条交叉纤维,并准确恢复它们的扩散系数。与 DKI、QBI 和 GQI 相比,DBSI 还具有更好的角度分辨率。

相似文献

引用本文的文献

10
Standard clinical approaches and emerging modalities for glioblastoma imaging.胶质母细胞瘤成像的标准临床方法和新兴模式
Neurooncol Adv. 2022 May 26;4(1):vdac080. doi: 10.1093/noajnl/vdac080. eCollection 2022 Jan-Dec.

本文引用的文献

3
Diffusion basis spectrum imaging provides insights into MS pathology.弥散张量谱成像为 MS 病理学提供了新视角。
Neurol Neuroimmunol Neuroinflamm. 2019 Dec 23;7(2). doi: 10.1212/NXI.0000000000000655. Print 2020 Mar.
9
On modeling.关于建模。
Magn Reson Med. 2018 Jun;79(6):3172-3193. doi: 10.1002/mrm.27101. Epub 2018 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验