Suppr超能文献

从数据到希望:基于深度神经网络的中毒自杀案例预测(DNNPPS)

From Data to Hope: Deep Neural Network-Based Prediction of Poisoning (DNNPPS) Suicide Cases.

作者信息

Ehtemam Houriyeh, Ghaemi Mohammad Mehdi, Ghasemian Fahimeh, Bahaadinbeigy Kambiz, Sadeghi-Esfahlani Shabnam, Sanaei Alireza, Shirvani Hassan

机构信息

Medical Technology Research Centre (MTRC), School of Engineering and the Built Environment, Anglia Ruskin University, Essex CM1 1SQ, UK.

Health Services Management Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.

出版信息

Iran J Public Health. 2024 Dec;53(12):2802-2811.

Abstract

BACKGROUND

Suicide is a critical global issue with profound social and economic consequences. Implementing effective prevention strategies is essential to alleviate these impacts. Deep neural network (DNN) algorithms have gained significant traction in health sectors for their predictive capability. We looked at the potential of DNNs to predict suicide cases.

METHODS

A descriptive-analytical, cross-sectional study was conducted to analyze suicide data using a deep neural network predictive prevention system (DNNPPS). The analysis utilized a suicide dataset comprising 1,500 data points, provided by a health research center in Kerman, Iran, spanning the years 2019-2022.

RESULTS

Factors such as history of psychiatric hospitals, days of the week, and job were identified as the most important risk factors for predicting suicide attempts. Promising results were obtained by applying the DNNPPS model to a dataset of 1453 individuals with a history of suicide. The problem was approached as a binary classification task, with suicide history as the target variable. We performed preprocessing techniques, including class balancing, and constructed a DNN model using a sequential architecture with four dense layers.

CONCLUSION

The success of the DNN algorithm depends on the quality and quantity of data, as well as the model's architecture. High-quality data should be accurate, representative, and relevant, while a large dataset enables the DNN to learn more features. In our study, the DNNPPS model performed well, achieving an F1-score of 91%, which indicates high accuracy in predicting suicide cases and a good balance between precision and recall.

摘要

背景

自杀是一个严重的全球性问题,会产生深远的社会和经济后果。实施有效的预防策略对于减轻这些影响至关重要。深度神经网络(DNN)算法因其预测能力在卫生领域获得了广泛关注。我们研究了DNN预测自杀案例的潜力。

方法

进行了一项描述性分析横断面研究,使用深度神经网络预测预防系统(DNNPPS)分析自杀数据。该分析利用了一个自杀数据集,包含1500个数据点,由伊朗克尔曼的一个健康研究中心提供,时间跨度为2019年至2022年。

结果

诸如精神病院就诊史、星期几和工作等因素被确定为预测自杀未遂的最重要风险因素。将DNNPPS模型应用于1453名有自杀史的个体数据集时获得了有前景的结果。该问题被视为一个二分类任务,以自杀史作为目标变量。我们执行了预处理技术,包括类别平衡,并使用具有四个密集层的顺序架构构建了一个DNN模型。

结论

DNN算法的成功取决于数据的质量和数量以及模型的架构。高质量的数据应该准确、具有代表性且相关,而大数据集能使DNN学习更多特征。在我们的研究中,DNNPPS模型表现良好,F1分数达到91%,这表明在预测自杀案例方面具有很高的准确性,并且在精确率和召回率之间取得了良好的平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验