Suppr超能文献

基于特征的深度神经网络方法用于预测COVID-19患者的死亡风险。

Feature-based deep neural network approach for predicting mortality risk in patients with COVID-19.

作者信息

Chang Thing-Yuan, Huang Cheng-Kui, Weng Cheng-Hsiung, Chen Jing-Yuan

机构信息

Department of Information Management, National Chin-Yi University of Technology, Taichung 41130, Taiwan, Republic of China.

Department of Business Administration, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, Taiwan, Republic of China.

出版信息

Eng Appl Artif Intell. 2023 Sep;124:106644. doi: 10.1016/j.engappai.2023.106644. Epub 2023 Jun 19.

Abstract

In this study, we integrate deep neural network (DNN) with hybrid approaches (feature selection and instance clustering) to build prediction models for predicting mortality risk in patients with COVID-19. Besides, we use cross-validation methods to evaluate the performance of these prediction models, including feature based DNN, cluster-based DNN, DNN, and neural network (multi-layer perceptron). The COVID-19 dataset with 12,020 instances and 10 cross-validation methods are used to evaluate the prediction models. The experimental results showed that the proposed feature based DNN model, holding Recall (98.62%), F1-score (91.99%), Accuracy (91.41%), and False Negative Rate (1.38%), outperforms than original prediction model (neural network) in the prediction performance. Furthermore, the proposed approach uses the Top 5 features to build a DNN prediction model with high prediction performance, exhibiting the well prediction as the model built by all features (57 features). The novelty of this study is that we integrate feature selection, instance clustering, and DNN techniques to improve prediction performance. Moreover, the proposed approach which is built with fewer features performs much better than the original prediction models in many metrics and can still remain high prediction performance.

摘要

在本研究中,我们将深度神经网络(DNN)与混合方法(特征选择和实例聚类)相结合,以构建预测模型来预测COVID-19患者的死亡风险。此外,我们使用交叉验证方法来评估这些预测模型的性能,包括基于特征的DNN、基于聚类的DNN、DNN和神经网络(多层感知器)。使用具有12020个实例的COVID-19数据集和10种交叉验证方法来评估预测模型。实验结果表明,所提出的基于特征的DNN模型在预测性能方面优于原始预测模型(神经网络),其召回率为98.62%,F1分数为91.99%,准确率为91.41%,假阴性率为1.38%。此外,所提出的方法使用前5个特征构建了一个具有高预测性能的DNN预测模型,其预测效果与使用所有特征(57个特征)构建的模型相当。本研究的新颖之处在于我们整合了特征选择、实例聚类和DNN技术以提高预测性能。此外,所提出的使用较少特征构建的方法在许多指标上比原始预测模型表现得更好,并且仍然可以保持较高的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7396/10277846/b4ce46977c78/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验