Suppr超能文献

基于端粒的肺癌早期诊断风险模型。

Telomere-based risk models for the early diagnosis of lung cancer.

作者信息

Molina-Pinelo Sonia, Ferrer Sánchez Irene, Najarro Pilar, Paz-Ares Luis, Fernández Luis, Castelló Nila, Richart López Luis Alberto, Rodríguez Gambarte Juan Diego, Sanz García Máximo, Salinas Ana, Suárez Rocío, Romero-Romero Beatriz, Martín-Juan José, Viñuela María Eugenia, Butler Ray G, de Pedro Nuria

机构信息

Department de Medical Oncology, University Hospital Virgen del Rocío, Sevilla, Spain.

Institute of Biomedicine de Seville (CSIC), University of Seville, Seville, Spain.

出版信息

Heliyon. 2024 Dec 6;10(24):e41040. doi: 10.1016/j.heliyon.2024.e41040. eCollection 2024 Dec 30.

Abstract

BACKGROUND

The objective of this study was to evaluate the use of telomere length measurements as diagnostic biomarkers during early screening for lung cancer in high-risk patients.

METHODS

This was a prospective study of patients undergoing lung cancer diagnosis at two Spanish hospitals between April 2017 and January 2020. Telomeres from peripheral blood lymphocytes were analysed by Telomere Analysis Technology, which is based in high-throughput quantitative fluorescent in situ hybridization. Analytical predictive models were developed using Random Forest from the dataset of telomere-associated variables (TAV). Receiver Operating Characteristic curves were used to characterize model performance.

FINDINGS

From 233 patients undergoing lung cancer diagnosis, 106 patients aged 55-75 with lung cancer or lung cancer and COPD were selected. A control group (N = 453) included individuals of similar age with COPD or healthy. Telomere analysis showed that patients in the cancer cohort had a higher proportion of short telomeres compared to the control cohort. A TAV-based predictive model assuming a prevalence of 5 % of lung cancer among screened subjects showed an AUC of 0.98 %, a positive predictive value of 0.60 (95 % CI, 0.49-0.70) and a negative predictive value of 0.99 (95 % CI, 0.98-0.99) for prediction of lung cancer.

INTERPRETATION

The results of this study suggest that TAV analysis in peripheral lymphocytes can be considered a useful diagnostic tool during screening for lung cancer in high-risk patients. TAV-based models could improve the predictive power of current initial diagnostic pathways, but further work is needed to integrate them into routine clinical evaluation.

FUNDING

Life Length SL.

摘要

背景

本研究的目的是评估在高危患者肺癌早期筛查过程中,端粒长度测量作为诊断生物标志物的应用情况。

方法

这是一项对2017年4月至2020年1月期间在两家西班牙医院接受肺癌诊断的患者进行的前瞻性研究。采用基于高通量定量荧光原位杂交的端粒分析技术对外周血淋巴细胞的端粒进行分析。利用随机森林算法从端粒相关变量(TAV)数据集中开发分析预测模型。采用受试者工作特征曲线来描述模型性能。

研究结果

在233例接受肺癌诊断的患者中,选取了106例年龄在55 - 75岁之间患有肺癌或肺癌合并慢性阻塞性肺疾病(COPD)的患者。对照组(N = 453)包括年龄相仿的COPD患者或健康个体。端粒分析显示,与对照组相比,癌症队列中的患者短端粒比例更高。一个基于TAV的预测模型假设在筛查对象中肺癌患病率为5%,其预测肺癌的曲线下面积(AUC)为0.98%,阳性预测值为0.60(95%可信区间,0.49 - 0.70),阴性预测值为0.99(95%可信区间,0.98 - 0.99)。

解读

本研究结果表明,外周淋巴细胞中的TAV分析可被视为高危患者肺癌筛查过程中的一种有用诊断工具。基于TAV的模型可以提高当前初始诊断途径的预测能力,但需要进一步开展工作将其纳入常规临床评估。

资金来源

Life Length SL公司。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec6e/11696659/a9fba1ec2336/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验