Suppr超能文献

使用最大熵模型分析气候变化对1904年范·哈尔分布在全球范围内的影响。

Using MaxEnt modeling to analyze climate change impacts on van Hall, 1904 distribution on the global scale.

作者信息

Khalaf Sameh M H, Alqahtani Monerah S M, Ali Mohamed R M, Abdelalim Ibrahim T I, Hodhod Mohamed S

机构信息

Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA University), 6th October City, 12566, Egypt.

Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.

出版信息

Heliyon. 2024 Dec 7;10(24):e41017. doi: 10.1016/j.heliyon.2024.e41017. eCollection 2024 Dec 30.

Abstract

is a pathogenic bacterium that poses a significant threat to global agriculture, necessitating a deeper understanding of its ecological dynamics in the context of global warming. This study investigates the current and projected future distribution of , focusing on the climatic factors that influence its spread. To achieve this, we employed Maximum Entropy (MaxEnt) modeling based on Geographic Information Systems (GIS) to analyze species occurrence records alongside relevant climate data. The MaxEnt model was calibrated using 75 % of the occurrence data, with the remaining 25 % reserved for validation. The model's performance was meticulously assessed utilizing the area under the curve (AUC) and true skill statistics (TSS), resulting in an AUC score of 0.92, indicating excellent predictive capability. Our analysis identified key climatic parameters-temperature, precipitation, and humidity-that significantly affect the presence of . Notably, our findings project an expansion of the bacterium's geographic range in the coming decades, with optimal conditions shifting toward the poles. This research underscores the significant influence of climate change on the distribution of and provides valuable insights for developing targeted disease management strategies. The anticipated increase in bacterial infections in crops highlights the urgent need for proactive measures to mitigate these effects.

摘要

是一种对全球农业构成重大威胁的致病细菌,因此有必要在全球变暖的背景下更深入地了解其生态动态。本研究调查了的当前和预计未来分布情况,重点关注影响其传播的气候因素。为实现这一目标,我们基于地理信息系统(GIS)采用最大熵(MaxEnt)建模,结合相关气候数据来分析物种出现记录。MaxEnt模型使用75%的出现数据进行校准,其余25%留作验证。利用曲线下面积(AUC)和真实技能统计(TSS)对模型性能进行了细致评估,AUC得分为0.92,表明具有出色的预测能力。我们的分析确定了关键气候参数——温度、降水和湿度——这些参数对的存在有显著影响。值得注意的是,我们的研究结果预测,在未来几十年里,这种细菌的地理分布范围将会扩大,最佳条件将向两极转移。这项研究强调了气候变化对分布的重大影响,并为制定有针对性的疾病管理策略提供了有价值的见解。预计作物中细菌感染的增加凸显了采取积极措施减轻这些影响的迫切需要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6d5/11696772/698571b6583c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验