Suppr超能文献

一种基于情感关联建模的多标签文本情感分析模型。

A multi-label text sentiment analysis model based on sentiment correlation modeling.

作者信息

Ni Yingying, Ni Wei

机构信息

School of Media & Communication Shanghai Jiao Tong University, Shanghai, China.

Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China.

出版信息

Front Psychol. 2024 Dec 20;15:1490796. doi: 10.3389/fpsyg.2024.1490796. eCollection 2024.

Abstract

OBJECTIVE

This study proposes an emotion correlation-enhanced sentiment analysis model (ECO-SAM), a sentiment correlation modeling-based multi-label sentiment analysis model.

METHODS

The ECO-SAM utilizes a pre-trained BERT encoder to obtain semantic embedding of input texts and then leverages a self-attention mechanism to model the semantic correlation between emotions. Additionally, it utilizes a text emotion matching neural network to make sentiment analysis for input texts.

RESULTS

The experiment results in public datasets demonstrate that compared to baseline models, the ECO-SAM obtains the precision score increasing by 13.33% at most, the recall score increasing by 3.69% at most, and the F1 score increasing by 8.44% at most. Meanwhile, the modeled sentiment semantics are interpretable.

LIMITATIONS

The data modeled by the ECO-SAM are limited to text-only modality, excluding multi-modal data that could enhance classification performance. Additionally, the training data are not large-scale, and there is a lack of high-quality large-scale training data for fine-tuning sentiment analysis models.

CONCLUSION

The ECO-SAM is capable of effectively modeling sentiment semantics and achieving excellent classification performance in many public sentiment analysis datasets.

摘要

目的

本研究提出了一种情感关联增强的情感分析模型(ECO-SAM),这是一种基于情感关联建模的多标签情感分析模型。

方法

ECO-SAM利用预训练的BERT编码器获取输入文本的语义嵌入,然后利用自注意力机制对情感之间的语义关联进行建模。此外,它还利用文本情感匹配神经网络对输入文本进行情感分析。

结果

在公共数据集上的实验结果表明,与基线模型相比,ECO-SAM的精确率得分最多提高了13.33%,召回率得分最多提高了3.69%,F1得分最多提高了8.44%。同时,所建模的情感语义是可解释的。

局限性

ECO-SAM所建模的数据仅限于纯文本模态,不包括可提高分类性能的多模态数据。此外,训练数据规模不大,缺乏用于微调情感分析模型的高质量大规模训练数据。

结论

ECO-SAM能够有效地对情感语义进行建模,并在许多公共情感分析数据集中取得优异的分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e1a/11697287/955de4c74d2c/fpsyg-15-1490796-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验